Refine Your Search

Topic

Author

Search Results

Technical Paper

A study of Multi-Functional Membrane Filters made of Fine Catalyst Particles

2023-09-29
2023-32-0125
A multi-functional membrane filter was developed through deposition of agglomerated Three-Way Catalyst particles with a size of 1 ~ 2 microns on the conventional bare particulate filter. The filtration efficiency reaches almost 100 % from the beginning of soot trapping with a low pressure drop and both reductions of NO and CO emission were achieved.
Technical Paper

Research on Super-Lean Burn Spark Ignition Engine with In-Cylinder Water Injection using Gasoline Surrogate Fuels

2023-09-29
2023-32-0055
The combination of super-lean burn spark ignition engine (excess air ratio λ ≈ 2) and in-cylinder water injection (WI) makes it possible to achieve thermal efficiency higher than 50%. Toward future fuel diversification including carbon-neutral fuels, technologies to improve SI engine thermal efficiency applicable to various fuels are required. In this study, the effect of in-cylinder WI on SI engine performance with a compression ratio of 17 and λ = 1.85 is investigated using premium gasoline, 5 components surrogate fuels for premium gasoline (S5H), and for regular gasoline (S5R). In the case of premium gasoline and S5H, spark timing can be advanced to MBT (minimum advance for best torque) by WI and gross indicated thermal efficiency (gITE) increases to 51.2% (premium gasoline) at water/fuel weight ratio (W/F) = 57.7% and 50.8% (S5H) at W/F = 62.9%. In the case of S5R, on the other hand, a strong knock forces a large spark retard at no-water condition.
Technical Paper

Real World Emissions Analysis Using Sensor-based Emissions Measurement System for Light-duty Direct-Injection Gasoline Vehicle

2022-03-29
2022-01-0572
In recent years, particulate matter (PM) emitted from direct-injection gasoline vehicles is becoming an increasingly concerning problem. In addition, it is often reported that ammonia (NH3) is emitted from gasoline vehicles equipped with a three-way catalyst. These emissions might be largely emitted especially when driving in on-road driving conditions. In this study, we investigated the emissions, NOx, NH3, and PM/PN (particulate number) of a light-duty direct-injection gasoline vehicle when driving on actual roads. Using a small direct-injection gasoline vehicle equipped with a three-way catalyst, experiment was conducted 8 times on the same route, and these emissions were measured. In this study, vehicle specific power (VSP) was introduced, which can be calculated using vehicle parameters, vehicle speed, and road gradient. The effects of parameters acquired through on-board diagnostics (OBD) port and VSP on emissions were investigated.
Technical Paper

Study on Fuel-Saving Durability of Ultra-Low Viscosity 0W-8 Gasoline Engine Oil

2021-04-06
2021-01-0566
The JASO GLV-1 standard was introduced in Japan for 0W-8 ultra-low viscosity gasoline engine oil to improve fuel economy. Fuel economy targets are specified for new oil but not for aged oil. In contrast, Sequence VI in the ILSAC GF-6 standard requires fuel economy improvement for both new and aged oils. This test simulates fuel economy improvement after 6400 km (FEI 1) and 16000 km (FEI 2) of driving based on US fuel economy certification testing. Currently, 0W-8 is not included in the ILSAC standard and the fuel-saving durability of 0W-8 has not been investigated. To include ultra-low viscosity oil like 0W-8 in future engine oil standards, it is necessary to know its fuel-saving durability and to examine the evaluation test method. This study focused on the fuel-saving durability of 0W-8 with or without the Mo friction modifier and considered the evaluation method.
Technical Paper

Stereoscopic Micro-PIV Measurement of Near-Wall Velocity Distribution in Strong Tumble Flow under Motored SI Engine Condition

2020-09-15
2020-01-2019
In a state-of-the-art lean-burn spark ignition engine, a strong in-cylinder flow field with enhanced turbulence intensity is formed, and understanding the wall heat transfer mechanism of such a complex flow is required. The flow velocity and temperature profiles inside the wall boundary layer are strongly related to the heat transfer mechanism. In this study, two-dimensional three-component (2D3C) velocity distribution near the piston top surface was measured during the compression stroke in a strong tumble flow using a rapid compression and expansion machine (RCEM) and a stereoscopic micro-PIV system. The bore, stroke, compression ratio, and compression time were 75 mm, 128 mm, 15, and 30 ms (equivalent to 1000 rpm), respectively.
Technical Paper

Heat Transfer Analysis in a Diesel Engine Based on a Heat Flux Measurement Using a Rapid Compression and Expansion Machine

2017-11-05
2017-32-0115
To investigate the heat transfer phenomena inside the combustion chamber of a diesel engine, a correlation for the heat transfer coefficient in a combustion chamber of a diesel engine was investigated based on heat flux measured by the authors in the previous study(8) using the rapid compression and expansion machine. In the correlation defined in the present study, thermodynamically estimated two-zone temperatures in the burned zone and the unburned zone are applied. The characteristic velocity given in the correlation is related to the speed of spray flame impinging on the wall during the fuel injection period. After the fuel injection period, the velocity term of the Woschni’s equation is applied. It was shown that the proposed correlation well expresses heat transfer phenomena in diesel engines.
Technical Paper

Impact of Biodiesel on Small CI Engine Combustion Behavior and Particle Emission Characteristic

2017-11-05
2017-32-0094
Diesel engines are high thermal efficiency because of high compression ratio but produce high concentration of particulate matter (PM) because of direct injection fuel diffusion combustion. PM must be removed from the exhaust gas to protect human health. This research describes biodiesel engine performance, efficiency and combustion behavior using combustion pressure analyzer. It was clearly observed that PM emitted from CI engines can be reduced by using renewable bio-oxygenated fuels. The morphology and nanostructure of fossil fuel and biofuel PMs were investigated by using a Scanning electron microscopy (SEM) and Transmission electron microscopy (TEM). The morphology of biodiesel and diesel doesn’t have much different in the viewpoint of particulate matter trapping using DPF micro surface pores. The agglomerated ultrafine particles and primary nanoparticles sizes of diesel and biodiesel engine’s PM are approximately 50-500 nm and 20-50 nm, respectively.
Technical Paper

A 3D DNS Investigation on the Flame-Wall Interactions and Heat Loss in a Constant Volume Vessel

2015-09-01
2015-01-1910
A direct numerical simulation of turbulent premixed flames in a constant volume vessel is conducted to understand flame-wall interactions and heat loss characteristics under the pressure rising condition. The contribution of the burnt region to the total heat flux is more significant compared to the reaction region. The velocity profiles indicate inward and outward motions. The profile of the turbulent kinetic energy is damped by the wall, and no distinct turbulence production is observed. Since the turbulence is weakened in the burnt region, the effect of near wall turbulence to the total wall heat flux is considered to be limited.
Technical Paper

Scanning Electron Microscopic Visualization of Transition from Surface Pore Filtration to Cake Filtration Inside Diesel Particulate Filter Walls

2015-04-14
2015-01-1018
Surface pores that are open to the inlet channel below the surface play a particularly important role in the filtration of particulate matter (i.e., soot) inside the walls of a diesel particulate filter (DPF); they are closely related to the pressure drop and filtration efficiency through the DPF as well as the performance of the regeneration process. In this study, a scanning electron microscope (SEM) was used to dynamically visualize the soot deposition process at the particle scale as “time-lapse” images corresponding to the different increases in the pressure drop at each time step. The soot was first trapped at the deepest areas of the surface pores because the porous channels in this area were constricted by silicon carbide grains; soot dendrite structures were observed to grow and finally cause obstructions here.
Technical Paper

Experimental Investigation in Combustion Characteristics of Ethanol-gasoline Blends for Stratified Charge Engine

2011-11-08
2011-32-0551
The increasing of global energy demand and stringent pollution regulations have promoted research on alternative fuels. In Thailand, ethanol, can be produced from many sources of national agriculture products as renewable fuel, which was strongly promoted by government due to its many merits for use in transportation field. In this study, combustion characteristics of ethanol-gasoline blend (20%, 85%, and 100%) as well as pure gasoline (E0) were investigated by using a swirl-generated constant volume combustion chamber. Flame propagations of different fuel blends were observed by high speed Schlieren photography technique while pressure history data were recorded for detailed combustion analysis. Combustion behavior, combustion duration and rate of pressure rise of all tested fuels were investigated in various swirl intensities and equivalence ratios. In addition, effect of swirl intensities and ethanol concentration on lean misfire limit were also discussed.
Technical Paper

Low Temperature Starting Techniques for Ethanol Engine without Secondary Fuel Tank

2011-11-08
2011-32-0552
The present study aims to investigate the parameters affecting cold start characteristics of ethanol at low temperature, and suggest a solution to avoid cold starting problem without the installation of second fuel tank. The testing engine is a 125cc volume displacement, single-cylinder four strokes SI engine with fuel injection and ignition timing system controlled by ECU (electronic control unit). The cold starting performance tests were extensively conducted with different percentages of ethanol blends, surrounding temperatures, heating inside combustion chamber, heater injector, pre-cranking without fuel injection, and amount of fuel injection. From the experimental results, when using ethanol fuel in conventional engine, the problem of cold starting was observed at surrounding temperature lower than 20°C for ethanol. Increasing of injection duration can lower the possible cold start temperature of neat ethanol.
Technical Paper

Simultaneous Measurements of Temperatures of Flame and Wall Surface in a Combustion Chamber of Diesel Engine

2011-08-30
2011-01-2047
In order to investigate the combustion phenomena in a combustion chamber of the diesel engine at transient operations, the simultaneous measurements of temperatures of flame and wall surface in a combustion chamber were conducted. The new technique for simultaneous measurements of flame temperature and wall surface was developed. Laser-Induced phosphorescence was used for the measurement of wall surface temperature which was coupled with the flame temperature measurement by a two-color pyrometry. The NOx and soot emissions were also measured simultaneously in transient operations. The relation between the temporal changes of emissions and temperatures of flame and surface wall are discussed. The results show that the temporal change of NOx emission during transient operation is similar to that of the average gas temperature in a chamber. On the other hand, the temporal change of soot emission is similar to neither that of flame temperature nor that of average gas temperature.
Technical Paper

Extension of Lean and Diluted Combustion Stability Limits by Using Repetitive Pulse Discharges

2010-04-12
2010-01-0173
A newly developed small-sized IES (inductive energy storage) circuit with a semiconductor switch at turn-off action was successfully applied to an ignition system. This IES circuit can generate repetitive nanosecond pulse discharges. An ignition system using repetitive nanosecond pulse discharges was investigated as an alternative to conventional spark ignition systems in the previous papers. Experiments were conducted using constant volume chamber for CH₄ and C₃H₈-air mixtures. The ignition system using repetitive nanosecond pulse discharges was found to improve the inflammability of lean combustible mixtures, such as extended flammability limits, shorted ignition delay time, with increasing the number of pulses for CH₄ and C₃H₈-air mixtures under various conditions. The mechanisms for improving the inflammability were discussed and the effectiveness of IES circuit under EGR condition was also verified.
Journal Article

Simultaneous Measurements of Aromatic Hydrocarbons in Exhaust using a Laser Ionization Method

2009-11-02
2009-01-2742
A simultaneous multi-composition analyzing (SMCA) resonance enhanced multi-photon ionization (REMPI) system was used to investigate gasoline engine exhaust. Observed peaks for exhaust were smaller mass numbers than those from diesel exhaust. However, large species up to three ring aromatics were observed suggesting that soot precursor forms even in the gasoline engine. At low catalyst temperature condition, the reduction efficiencies of a three-way catalyst were higher for higher mass numbers. This result indicates that the larger species accumulate in the catalyst or elsewhere due to their lower vapor pressures. To evaluate the emission of low volatility species, the accumulation should be taken into account. In the hot mode, reduction efficiencies for aromatic species of three-way catalyst were almost 99.5% however, they fall to 70% in the cold start condition.
Technical Paper

Real-time Analysis of Benzene in Exhaust Gas from Driving Automobiles Using Jet-REMPI Method

2009-11-02
2009-01-2740
Real-time analysis of benzene in automobile exhaust gas was performed using the Jet-REMPI (supersonic jet / resonance enhanced multi-photon ionization) method. Real-time benzene concentration of two diesel trucks and one gasoline vehicle driving in Japanese driving modes were observed under ppm level at 1 s intervals. As a result, it became obvious that there were many differences in their emission tendencies, because of their car types, driving conditions, and catalyst conditions. In two diesel vehicle, benzene emission tendencies were opposite. And, in a gasoline vehicle, emission pattern were different between hot and cold conditions due to the catalyst conditions.
Journal Article

Laser-Induced Phosphorescence Thermography of Combustion Chamber Wall of Diesel Engine

2008-04-14
2008-01-1069
In order to investigate the mechanism of heat transfer on the chamber wall of direct-injection diesel engines, 2-D temperature imaging and heat flux measurement in the flame impinging region on the chamber wall were conducted using laser-induced phosphorescence technique. The temperature of the chamber wall surface was measured by the calibrated intensity variation of the 355nm-excited laser-induced phosphorescence from an electrophoretically deposited thin layer of La2O2S:Eu phosphor on a quartz glass plate placed in a rapid compression and expansion machine (RCEM). Instantaneous 2-D images of wall temperature at different timings after start of injection and time-resolved (10kHz) heat flux near the flame impinging region were obtained for combusting and non-combusting diesel sprays with impinging distance of 23.4mm at different injection pressures (80 and 120MPa).
Technical Paper

Development of a Novel Ignition System Using Repetitive Pulse Discharges: Ignition Characteristics of Premixed Hydrocarbon-Air Mixtures

2008-04-14
2008-01-0468
A newly developed small-sized IES (inductive energy storage) circuit with static induction thyristor at turn-off action was successfully applied to an ignition system. This IEC circuit can generate repetitive nanosecond pulse discharges. In this paper, the ignition system using repetitive nanosecond pulse discharges was investigated as an alternative to conventional spark ignition systems. The experiments were conducted using spherically expanding flame configuration for CH4 and C3H8-air mixtures under various conditions. In conclusions, the ignition system using repetitive nanosecond pulse discharges was found to extend lean flammability limits compared with conventional spark ignition systems. In addition, the ignition system using repetitive nanosecond pulse discharges could shorten ignition delay time.
Technical Paper

A Study on Effect of Heterogeneity of Oxygen Concentration of Mixture in a Combustion Chamber on Combustion and Emissions of Diesel Engine

2007-07-23
2007-01-1845
In this study, the combustion characteristics of diesel flame achieved in a rapid compression and expansion machine (RCEM) at various patterns of oxygen distribution in the chamber are investigated in order to clarify the effect of heterogeneity of oxygen distribution in diesel engines induced by EGR on the soot and NOx emissions. To make the heterogeneous distribution of oxygen in a combustion chamber, the mixtures with different oxygen concentrations are injected through the each different port located on the cylinder wall. Results indicate that the amount of oxygen entrained into the spray upstream the luminous flame region affects the NO emission from diesel flame strongly.
Technical Paper

Engine Mount Characteristics Identification of Large Outboard Motor Using Experimental Modal Analysis

2006-11-13
2006-32-0083
The method was established to identify the dynamic stiffness of the engine mount using modal parameters acquired from experimental modal analysis. Vibration tests were conducted using actual large outboard motor the BF225 (165 kW), and the dynamic stiffness of the mounts was identified. The results show that this method can identify the engine mount dynamic stiffness more adequately than the conventional method, even when the engine mounts are subjected to loads corresponding to thrust force or even in the case that the stiffness of the parts supporting an outboard motor is low.
Technical Paper

Influence of the Head Shape Variation on Brain Damage under Impact

2005-06-14
2005-01-2738
The influence of the head shape on intracranial responses under impact was investigated by using Finite Element Method. Head shape models of 52 young adult male Japanese were analyzed by Multi Dimensional Scaling (MDS), and a 2 dimensional distribution map of head shapes was obtained. Five finite element models of the Japanese head were constructed by a transformed finite element model of an average European adult male (H-Head model) using Free Form Deformation (FFD) technique. The constructed models represent the 5th and 95th percentile of the first 2 scales obtained by MDS. The same acceleration pulse was applied to the H-Head model and the five finite element models. The cause of the difference was considered to be differences in pressure distribution in the brain caused by the differences in the head shape. Variation in the head shape should be taken into account in simulating the effects of impact using a finite element model.
X