Refine Your Search

Topic

Author

Search Results

Technical Paper

Development of New Continuously Variable Transmission for 2.0-Liter Class Vehicles

2018-04-03
2018-01-1062
Toyota has developed a new continuously variable transmission (CVT) called "Direct Shift-CVT" which is for 2.0-liter class vehicles. This CVT provided not only power transmission by a metal belt held with a conventional pulley but also additional gear mechanism. This CVT is developed to improve fuel efficiency, acceleration characteristic, and quietness. At this CVT, the startup low gear ratio is achieved by gear mechanism and the power is switched by clutches. Since the belt-pulley portion can be realized to be wide range by using only high gear ratio range, the input load into belt-pulley portion is reduced and unprecedented compact and high efficient belt-pulley portion is established. Consequently, the high efficiency in all fields from startup acceleration to high speed driving is achieved to improve fuel efficiency.
Technical Paper

New 2.0L I4 Gasoline Direct Injection Engine with Toyota New Global Architecture Concept

2018-04-03
2018-01-0370
Toyota Motor Corporation has developed a new 2.0L Inline 4- Cylinder (I4) Gasoline Direct Injection Engine, the second Naturally Aspirated (NA) engine of the Toyota New Global Architecture (TNGA) engine series, to meet our customers’ expectations for drivability, performance, and fuel economy. The high speed combustion technologies adopted previously in our 2.5 L NA conventional and Hybrid Vehicle (HV) engines for the 2018 Toyota Camry are necessary for high engine power and thermal efficiency. To adopt our high speed combustion technology on engines with different displacements, the turbulence intensity has been defined as the target index of combustion speed. The basic engine structure has been revised by using Computational Fluid Dynamics (CFD) analysis to achieve the combustion target.
Technical Paper

Concept and Approach of Multi Stage Hybrid Transmission

2017-03-28
2017-01-1098
Lexus developed the Multi Stage Hybrid Transmission for the flagship Lexus LC500h coupe with the aim of achieving an excellent balance between fuel economy and acceleration performance. To gain these benefits, this transmission utilizes a multi-stage approach with the input split mode as an enabler for a concept of multiple high- efficiency points. In order to apply this approach to the transmission, a shift device was located immediately after a power split device. For functioning of the input split mode electrically-controlled continuously variable transmission, the power split device is connected with the motor, generator, and inverters. The optimal gear selection of the shift device to reduce the power loss in accordance with the driving state improves not only fuel economy but also heat management performance compared with the previous hybrid transmission.
Technical Paper

Development of Shift Control System for Multi Stage Hybrid Transmission

2017-03-28
2017-01-1150
Toyota Motor Corporation developed a new hybrid system, Multi Stage Hybrid System, for the Lexus flagship coupe LC500h with the aim of achieving an excellent balance between fuel economy and acceleration performance. The Multi Stage Hybrid Transmission used in this new hybrid system includes a shift device located immediately after the power split device and motor. Compared with previous hybrid systems, the new hybrid system improves fuel economy by reducing electrical loss in the optimal gears, which are selected depending on the driving state. The system also improves acceleration performance by increasing the driving force at low and medium vehicle speeds in lower gears. In addition, the range of the power split device that cooperates with the shift device was widened to enable both an electrically-controlled continuously variable transmission mode and a ten-speed transmission mode, which creates a direct shift feeling to improve driving pleasure.
Journal Article

Development of Multi Stage Hybrid System for New Lexus Coupe

2017-03-28
2017-01-1173
Lexus launched the new hybrid luxury coupe LC500h in 2017 to help enhance its brand image and competitiveness for the new generation of Lexus. During the development of the LC500h, major improvements were made to the hybrid system by adopting the newly-developed Multi Stage Hybrid System, which combines a multi stage shift device with the transmission from the previous hybrid system to maximize the potential of the electrically-controlled continuously variable transmission. Optimum engine and electrical component specifications were designed for the new vehicle and transmission. As a result, the LC500h achieves a 0-to-60 mph acceleration time of 4.7 seconds, with a combined fuel economy of 30.0 mpg while satisfying SULEV emissions requirements. Two controls were constructed to help resolve the issues that arose due to adding the shift device.
Journal Article

New Hybrid Genetic Algorithm for Pitch Sequence Optimization of CVT Variator Chain

2017-03-28
2017-01-1120
A CVT variator chain system is superior in transmission efficiency to a belt system because of its lower internal friction. However, a chain produces more noise than a belt due to the long pitch length of contact between the pulleys and rocker pins. This study focuses on optimization of the pitch sequence for reducing chain noise. The previous pitch sequence was suitably combined of links of different lengths to improve noise dispersibility for reducing chain noise. First, the object function was defined as the reduction of the peak level of 1st-order chain noise combined with a well-balanced the levels on the low and high frequency sides. Interior background noise consisting of road noise and wind noise have the characteristic that they increase as the frequency decreases.
Technical Paper

Internal Thrust Force Analysis of CVT Push Belt

2016-10-17
2016-01-2353
A CVT belt is composed of multiple elements and layered rings. Each of these component parts generates loss, including relative slippage caused by the geometrical relationship between the elements and innermost ring layer. An effective way of increasing CVT efficiency is to reduce this slippage. However, since the relative slippage also controls whether the rings transmit constant torque at all times, reducing the slippage will also have an effect on the torque transmission performance of the rings. Therefore, to improve CVT efficiency by reducing the relative slippage, it is first necessary to analyze the changes to torque transmission. However, this slippage is a phenomenon of the inner portion of the belt and it is extremely difficult to identify the internal thrust force when actual load is applied. This paper describes experiments carried out to analyze the changes in each torque transmission ratio when the relative slippage between the elements and innermost ring layer changes.
Technical Paper

Development of a Lightweight Soundproof Cover Using the Biot Theory (Vibration Propagation in Elastic Porous Materials), and an Example Application to a Transmission

2016-04-05
2016-01-0517
To reduce cabin noise and vehicle weight (for lower fuel consumption), a lightweight soundproofing cover was developed as a countermeasure to sources of noise, using the Biot theory (vibration propagation theory in poroelastic materials). This report also presents the results of its application to a metal belt-type continuously variable transmission (CVT) used in Toyota Motor Corporation’s 2.0L vehicles.
Technical Paper

Development of High Torque Capacity Variator System for CVT

2014-04-01
2014-01-1729
The new Jatco CVT8 High Torque (CVT8 HT) was developed for use on front-wheel-drive vehicles fitted with a large displacement engine. The development objectives set for this new CVT with a high torque capacity were outstanding fuel economy, size and weight reductions. To achieve those targets, a high torque capacity CVT chain was newly developed in cooperation with LuK GmbH & Co. KG. This article describes the efforts undertaken to develop increasing torque capacity.
Journal Article

Study of the Prediction Method for Maximum Traction Coefficient

2013-04-08
2013-01-0366
This report proposes a rheological model and a thermal analysis model for oil films, which transmit power through a variator, as a prediction method for the maximum traction coefficient, and then describes the application and verification of this method. The rheological model expresses the conditions inside the contact ellipse using a combination of viscosity and plasticity. The thermal analysis model for oil films was confirmed by comparison of previously obtained temperatures directly measured from the traction contact area of the four-roller experimental apparatus [1]. The measurement used a thin-film temperature sensor and the consistency between the calculated and measured values was verified in the estimation model by reflecting the precise thermal properties of the thin film. Most values were consistent with the calculated values for the middle plane local shear heating model inside the oil film.
Journal Article

Development of Ratio Control System for Toyota's New Continuously Variable Transmission

2013-04-08
2013-01-0367
Toyota has developed a new belt-type continuously variable transmission (CVT) for 1.5-liter compact vehicles. To improve both driveability and fuel economy over previous CVTs, pressure management was adopted as the shift control method. The new shift control system was designed using a model-based control method which uses a two-degree-of-freedom system composed of feedback and feedforward controls. Smooth shifting in all the target shift speed regions was realized by combining a feedback loop that considers the output limit of the pulley thrust into the feedforward controller. Furthermore, shift response was improved while maintaining or even improving stability. This paper describes the details of this shift control system.
Journal Article

Development of iQ with CVT for USA

2011-04-12
2011-01-1425
TOYOTA has developed the iQ with a 1.3L engine for the Scion brand in USA. Due to the importance of fun-to-drive factor for the Scion brand image, a responsive driving performance is required even with compact packaging and a small engine. In addition, because of the recent attention to global-warming and energy issues on a global scale, development of vehicles with high fuel economy is one of the most important issues for a car manufacturer. Therefore, it is necessary for a vehicle to have both high driving performance and fuel economy. TOYOTA has adopted the CVT-i as the transmission for this purpose. The following were achieved by adopting the CVT-i as the transmission for the iQ(1.3L). 1 Responsive driving performance with shift changes without a time lag. 2 Compact transmission for efficient vehicle packaging 3 Class-leading fuel economy performance. Moreover, it was developed with adjustments for the US market by improving the shift schedule for a linear acceleration feel.
Technical Paper

Development of Sound Source Search Technology for High Frequency Noise in Vehicle Interiors

2009-05-19
2009-01-2172
Continuously variable transmission (CVT) and hybrid systems, which have metal belts and electrical units not found in conventional transmissions, are susceptible to extremely High Frequency belt and electromagnetic noise between 5 to 10 kHz. The evaluation and reduction of high frequency (HF) noise of 5 kHz and more is therefore a critical point for improving the quietness of vehicles installed with such systems. This article describes new sound source search technology capable of identifying sources of noise up to 15 kHz in the vehicle interior. Unlike conventional beamforming methods, this new system uses an improved microphone array provided with additional acoustic material. This article outlines the development of the system and its application to sound source identification of HF noise in a hybrid vehicle.
Journal Article

Novel Microsurface Machining Techniques for Improving the Traction Coefficient

2008-04-14
2008-01-0414
This study examined methods of machining a microsurface texture on the surface of the rolling elements of a toroidal continuously variable transmission (CVT) for improving the traction coefficient. The microsurface texture of the toroidal surfaces consists of tiny circumferential grooves (referred to here as micro grooves) and a mirror-like surface finish similar to the rolling surface of bearings. Hard turning with a cubic boron nitride (cBN) cutting tool, grinding with a cBN wheel and micro forming were applied to machine the micro grooves. The results made clear the practical potential of each method. A micro forming device was also developed for use in actual production. A mirror-like surface finish and micro crowning of the convex portions of the microsurface texture were simultaneously executed by superfinishing them with a fine-grained elastic superfinishing stone.
Technical Paper

A Study of Power Roller Synchronization in a Toroidal CVT

2008-04-14
2008-01-0413
Building a toroidal continuously variable transmission (CVT) with multiple power rollers arranged in parallel is an effective way to improve its torque capacity. However, that requires a method for synchronizing the operation of all of the power rollers. This paper describes a method of synchronizing the four power rollers in a toroidal CVT that we have researched and developed. It also presents the results of an analysis of the cause of power roller vibration, which was a serious issue encountered in the development process, and describes an effective method for preventing it. The methods described here achieve sufficient synchronization performance for practical use of the toroidal CVT on production vehicles.
Technical Paper

Improvement of the High Rigidity Power-Roller Support Structure in a Half-Toroidal CVT

2004-10-25
2004-01-2930
This paper describes the improvement made to the high rigidity power-roller support structure in a dual-cavity half-toroidal CVT to further increase torque capacity. As a result of re-analyzing the function and parts composition of the previous structure, a high rigidity power-roller support structure, which permits power roller movement only in the horizontal direction, has been adopted. This structure enables the thrust and radial stiffness of the power-roller support to be substantially improved over the previous structure.
Technical Paper

Research on High Strength Material and Its Surface Modification for Parts Used Under Rolling Contact Cycles

2004-03-08
2004-01-0633
This paper describes a newly developed steel composition and surface modification methods for improving the rolling contact fatigue strength of parts used in transmission systems, especially continuously variable transmissions (CVTs) to increase their torque capacity. The mechanisms of two types of typical rolling contact fatigue phenomenon in case hardening steel were examined with the aim of improving rolling contact fatigue strength. One concerned white etching constituents (WEC) and the other one concerned peculiar microstructural changes caused by hydrogen originating from decomposition of the lubrication oil as a result of repeated rolling contact stress cycles. The rolling contact fatigue strength limit due to WEC has been improved markedly by dispersing fine M23C6 alloy carbides in the martensite matrix at the subsurface layer of parts.
Technical Paper

Development of a Slip Control System for a Lock-Up Clutch

2004-03-08
2004-01-1227
Lock-up operation of an automatic transmission is known as one good method of improving fuel economy. However, locking up the transmission at low vehicle speeds can often cause undesirable vibration or booming noise. Slip control of the lock-up clutch can resolve these problems, but the speed difference of the lock-up clutch needs to be controlled at a certain value. This control system has to overcome large changes in the parameters of the lock-up system at low vehicle speeds and also changes with regard to the speed ratio in a continuously variable transmission (CVT). In this study, this complex non-linear system has been modeled as a first-order linear parameter varying (LPV) system. A robust control algorithm was applied taking various disturbances into account to design a new slip lock-up control system.
Technical Paper

Continuously Variable Transmission Control System for Toyota Intelligent Idling Stop System

2004-03-08
2004-01-1635
As requirements for protecting the global environment are being heightened on a worldwide scale in recent years, the development of low fuel consumption technologies in order to inhibit the discharge of CO2 is an important issue for the automotive industry. Recently, Toyota has developed a Super CVT for the 1.3-to 1.5-liter class vehicles to further improve their fuel economy. This CVT has been adopted on vehicles equipped with the ‘idling stop system’. The ‘idling stop system’ automatically stops the engine when the vehicle is stopped and the transmission shift lever is in the ‘D’ position (e.g. when the vehicle is at a stoplight). This improves the fuel economy of the vehicle by eliminating fuel consumption while the vehicle is stopped. The conventional CVT poses unique conditions such as startoff time lag or shock after the engine is restarted. These conditions occur because the CVT oil pump cannot generate hydraulic pressure while the engine is stopped.
Technical Paper

Study of an Integrated Diesel Engine-CVT Control Algorithm for Improving Drivability and Exhaust Emission Performance

2001-10-01
2001-01-3452
Diesel engines have attracted more attention in recent years as one means of reducing carbon dioxide (CO2) emissions from motor vehicles. One of the major issues for diesel engines is exhaust emissions performance. Diesel engines also face various difficulties in providing the driving force demanded by the driver because of their greater inertia than that of gasoline engines. Meanwhile, continuously variable transmissions (CVTs) have been popularized as gearboxes that execute ratio changes continuously without generating shift shock. The aim of this research is to achieve higher levels of drivability and exhaust emissions performance by mating a CVT to a diesel engine and making maximum use of the continuous ratio change capability. An integrated engine-CVT control algorithm that can freely set the driving force and also the engine operating conditions for generating that driving force has been developed through this study.
X