Refine Your Search

Topic

Author

Search Results

Journal Article

Experimental and Computational Study of Auto-ignition in the New Prototype Engine with Focusing Compression due to Supermulti-Jets Colliding

2023-03-07
2023-01-0984
We have proposed a new compressive combustion principle leading to the auto-ignition of fuel by focusing compression due to the collision of the pulsed supermulti-jets. This principle has the potential of nearly-complete air insulation due to encasing burned gas around the center of the combustion chamber and a high compression ratio around the chamber center while suppressing vibration and noise levels. We have developed the first prototype engine having a very small combustion chamber of a diameter of 18 mm and also 14 side passages for the supermulti-jets colliding at the chamber center. Combustion experimental results indicating air insulation effect and high thrust over 100 N were obtained as basic data for various types of applications, including automobiles and aerospace usage such as for rockets. However, it was found that higher compression due to more jets is necessary to get stabler combustion.
Technical Paper

Experimental and Simulation Analysis of Spray and Combustion Characteristics in a Swirl-Chamber Diesel Engine

2022-08-30
2022-01-1049
A swirl-chamber diesel engine has an indirect injection system in which fuel is injected into a pre-chamber called the swirl-chamber that is separated from the main chamber. Indirect fuel injection systems can be directly mechanically controlled by the camshaft, which is cheaper than electronic control. For these reasons, they are used in diverse industrial applications and automobiles. However, optimization of the swirl-chamber shape and performance tests have been mainly experimental, and there has been insufficient verification of the accuracy of simulations. Thus, we have attempted to verify simulations using a rapid compression and expansion machine that can reproduce the combustion in one engine cycle, with a chamber like a swirl chamber in the cylinder head to visualize the behavior of evaporative sprays and the combustion process. In this study, the authors focused on the wall impingement of the fuel spray and took photos of its liquid phase and ignition.
Journal Article

Experimental and Numerical Study on the Effect of Nitric Oxide on Autoignition and Knock in a Direct-Injection Spark-Ignition Engine

2022-08-30
2022-01-1005
Nitric Oxide (NO) can significantly influence the autoignition reactivity and this can affect knock limits in conventional stoichiometric SI engines. Previous studies also revealed that the role of NO changes with fuel type. Fuels with high RON (Research Octane Number) and high Octane Sensitivity (S = RON - MON (Motor Octane Number)) exhibited monotonically retarding knock-limited combustion phasing (KL-CA50) with increasing NO. In contrast, for a high-RON, low-S fuel, the addition of NO initially resulted in a strongly retarded KL-CA50 but beyond the certain amount of NO, KL-CA50 advanced again. The current study focuses on same high-RON, low-S Alkylate fuel to better understand the mechanisms responsible for the reversal in the effect of NO on KL-CA50 beyond a certain amount of NO.
Technical Paper

Development of Aerodynamic Drag Reduction around Rear Wheel

2021-04-06
2021-01-0962
Due to new CO2 regulations and increasing demand for improved fuel economy, reducing aerodynamic drag has become more critical. Aerodynamic drag at the rear of the vehicle accounts for approximately 40% of overall aerodynamic drag due to low base pressure in the wake region. Many studies have focused on the wake region structure and shown that drag reduction modifications such as boattailing the rear end and sharpening the rear edges of the vehicle are effective. Despite optimization using such modifications, recent improvements in the aerodynamic drag coefficient (Cd) seem to have plateaued. One reason for this is the fact that vehicle design is oriented toward style and practicality. Hence, maintaining flexibility of design is crucial to the development of further drag reduction modifications. The purpose of this study was to devise a modification to reduce rear drag without imposing additional design restrictions on the upper body.
Technical Paper

Two Prototype Engines with Colliding and Compression of Pulsed Supermulti-Jets through a Focusing Process, Leading to Nearly Complete Air Insulation and Relatively Silent High Compression for Automobiles, Motorcycles, Aircrafts, and Rockets

2020-04-14
2020-01-0837
We have proposed the engine featuring a new compressive combustion principle based on pulsed supermulti-jets colliding through a focusing process in which the jets are injected from the chamber walls to the chamber center. This principle has the potential for achieving relatively silent high compression around the chamber center because autoignition occurs far from the chamber walls and also for stabilizing ignition due to this plug-less approach without heat loss on mechanical plugs including compulsory plasma ignition systems. Then, burned high temperature gas is encased by nearly complete air insulation, because the compressive flow shrinking in focusing process gets over expansion flow generated by combustion.
Technical Paper

Numerical Studies on Temporal and Spatial Distribution of Equivalence Ratio in Diesel Combustion Using Large Eddy Simulation

2020-01-24
2019-32-0599
To identify ways of achieving good mixture formation and heat release in diesel spray combustion, we have performed Large Eddy Simulation (LES) using a detailed chemical reaction mechanism to study the temporal and spatial distribution of the local equivalence ratios and heat release rate. Here we characterize the effect of the fuel injection rate profile on these processes in the combustion chamber of a diesel engine. Two injection rate profiles are considered: a standard (STD) profile, which is a typical modern common rail injection profile, and the inverse delta (IVD) profile, which has the potential to suppress rich mixture formation in the spray tip region. Experimental data indicate that the formation of such mixtures may extend the duration of the late combustion period and thus reduce thermal efficiency.
Journal Article

Theoretical Study on Spray Design for Small-Bore Diesel Engine (Second Report)

2017-03-28
2017-01-0704
Generally, soot emissions increase in diesel engines with smaller bore sizes due to larger spray impingement on the cavity wall at a constant specific output power. The objective of this study is to clarify the constraints for engine/nozzle specifications and injection conditions to achieve the same combustion characteristics (such as heat release rate and emissions) in diesel engines with different bore sizes. The first report applied the geometrical similarity concept to two engines with different bore sizes and similar piston cavity shapes. The smaller engine emitted more smoke because air entrainment decreases due to the narrower spray angle. A new spray design method called spray characteristics similarity was proposed to suppress soot emissions. However, a smaller nozzle diameter and a larger number of nozzle holes are required to maintain the same spray characteristics (such as specific air-entrainment and penetration) when the bore size decreases.
Journal Article

Development of New IGBT to Reduce Electrical Power Losses and Size of Power Control Unit for Hybrid Vehicles

2017-03-28
2017-01-1244
One way to improve the fuel efficiency of HVs is to reduce the losses and size of the Power Control Unit (PCU). To achieve this, it is important to reduce the losses of power devices (such as IGBTs and FWDs) used in the PCU since their losses account for about 20% of the total loss of an HV. Furthermore, another issue when reducing the size of power devices is ensuring the thermal feasibility of the downsized devices. To achieve the objectives of the 4th generation PCU, the following development targets were set for the IGBTs: reduce power losses by 19.8% and size by 30% compared to the 3rd generation. Power losses were reduced by the development of a new Super Body Layer (SBL) structure, which improved the trade-off relationship between switching and steady-state loss. This trade-off relationship was improved by optimizing the key SBL concentration parameter.
Technical Paper

Toyota New TNGA High-Efficiency Eight-Speed Automatic Transmission Direct Shift-8AT for FWD Vehicles

2017-03-28
2017-01-1093
The new eight-speed automatic transmission direct shift-8AT (UA80) is the first automatic transmission to be developed based on the Toyota New Global Architecture (TNGA) design philosophy. Commonizing or optimizing the main components of the UA80 enables compatibility with a wide torque range, including both inline 4-cylinder and V6 engines, while shortening development terms and minimizing investment. Additionally, it has superior packaging performance by optimizing the transmission size and arrangement achieving a low gravity center. It contributes to Vehicle’s attractiveness by improving driving performance and NVH. At the same time, it drastically improves fuel economy and quietness.
Technical Paper

Colorimetric Sensor for Facile Identification of Methanol-Containing Gasoline

2017-03-28
2017-01-1288
Despite the fact that methanol is toxic to human health and causes serious damage to automobile engines and fuel system components, methanol-containing gasoline is becoming popular in some areas. Methanol demonstrates similar chemical properties to ethanol (which is already established as an additive to gasoline), so that it is difficult to identify methanol-containing gasoline without performing proper chemical analysis. In this study, we report a low-cost, portable, and easy-to-operate sensor that selectively changes color in response to methanol contained in gasoline. The colorimetric sensor will be useful for automobile users to avoid methanol-containing gasoline upon refueling.
Technical Paper

Unsteady Three-Dimensional Computations of the Penetration Length and Mixing Process of Various Single High-Speed Gas Jets for Engines

2017-03-28
2017-01-0817
For various densities of gas jets including very light hydrogen and relatively heavy ones, the penetration length and diffusion process of a single high-speed gas fuel jet injected into air are computed by performing a large eddy simulation (LES) with fewer arbitrary constants applied for the unsteady three-dimensional compressible Navier-Stokes equation. In contrast, traditional ensemble models such as the Reynolds-averaged Navier-Stokes (RANS) equation have several arbitrary constants for fitting purposes. The cubic-interpolated pseudo-particle (CIP) method is employed for discretizing the nonlinear terms. Computations of single-component nitrogen and hydrogen jets were done under initial conditions of a fuel tank pressure of gas fuel = 10 MPa and back pressure of air = 3.5 MPa, i.e., the pressure level inside the combustion chamber after piston compression in the engine.
Technical Paper

Development of Gasoline Injector Cleaner for Port Fuel Injection and Direct Injection

2016-04-05
2016-01-0830
Port fuel injection (PFI) injector and direct fuel injection (DI) injector clogging from deposits caused by poor fuel quality, is a concern in emerging countries. Then DI injector deposits are sometimes cleaned by injector cleaners in such situation. However deposit cleaners for PFI injectors have not been developed, because of the lack of research of PFI injector deposits. Through chemical analysis, this study showed them to be water-soluble deposits. Subsequently success was achieved in developing a new gasoline injector cleaner applicable to injector deposits in both types of injectors, through optimization of a surface active agent.
Technical Paper

Oxidation Stability of Diesel/Biodiesel Blends: Impact of Fuels Physical-Chemical Properties over Ageing During Storage and Accelerated Oxidation

2015-09-01
2015-01-1930
Current and future engine technologies and fuels are mutually dependent. The increased use of alternative fuels has been linked to deterioration in performance of injectors, fuel filters and engines as a result of insoluble deposit formation. The present work aimed to study the impact of Diesel/biodiesel blends formulation (biodiesel feedstock and content) and temperature on the oxidation stability based on total acid number (TAN). The biofuels used in the fuel matrix were: rapeseed, soy and palm methyl esters (RME, SME and PME respectively). The Diesel/biodiesel blends were made with 0%v/v, 5%v/v, 10% v/v and 20%v/v of biodiesel blended with additive-free new Diesel. The oxidation stability of Diesel/biodiesel blends was to evaluate during 6 months fuels storage, under 20°C and 40°C, and fuels severe oxidation into a reactor vessel to better understand the parameters leading to fuel oxidation on-board.
Journal Article

Reaction Mechanism Analysis of Di-Air-Contributions of Hydrocarbons and Intermediates

2012-09-10
2012-01-1744
The details of Di-Air, a new NOx reduction system using continuous short pulse injections of hydrocarbons (HC) in front of a NOx storage and reduction (NSR) catalyst, have already been reported. This paper describes further studies into the deNOx mechanism, mainly from the standpoint of the contribution of HC and intermediates. In the process of a preliminary survey regarding HC oxidation behavior at the moment of injection, it was found that HC have unique advantages as a reductant. The addition of HC lead to the reduction or metallization of platinum group metals (PGM) while keeping the overall gas atmosphere in a lean state due to adsorbed HC. This causes local O₂ inhibition and generates reductive intermediate species such as R-NCO. Therefore, the specific benefits of HC were analyzed from the viewpoints of 1) the impact on the PGM state, 2) the characterization of intermediate species, and 3) Di-Air performance compared to other reductants.
Technical Paper

Biodiesel Stability and its Effects on Diesel Fuel Injection Equipment

2012-04-16
2012-01-0860
The effects of biodiesel oxidation stability on diesel fuel injection equipment (FIE) behavior were investigated using newly developed test rig and methodology. On the test rig, biodiesel blend fuels were circulated through a fuel tank and a common rail injection system. Fuel injected from typical diesel injectors was returned into the fuel tank to enhance the speed of fuel degradation. The results showed that injector deposits could be reproduced on a test rig. It was observed that injector body temperature increase accelerates the degradation of fuel and therefore gives earlier FIE failure. Fuel renewal could partially restore the injection quantity after complete failure at low injection pressure, thus showing a potential cleaning effect on injector deposits when refueling a car.
Journal Article

Low Emissions and High-Efficiency Diesel Combustion Using Highly Dispersed Spray with Restricted In-Cylinder Swirl and Squish Flows

2011-04-12
2011-01-1393
A new clean diesel combustion concept has been proposed and its excellent performance with respect to gas emissions and fuel economy were demonstrated using a single cylinder diesel engine. It features the following three items: (1) low-penetrating and highly dispersed spray using a specially designed injector with very small and numerous orifices, (2) a lower compression ratio, and (3) drastically restricted in-cylinder flow by means of very low swirl ports and a lip-less shallow dish type piston cavity. Item (1) creates a more homogeneous air-fuel mixture with early fuel injection timings, while preventing wall wetting, i.e., impingement of the spray onto the wall. In other words, this spray is suitable for premixed charge compression ignition (PCCI) operation, and can decrease both nitrogen oxides (NOx) and soot considerably when the utilization range of PCCI is maximized.
Journal Article

Development of iQ with CVT for USA

2011-04-12
2011-01-1425
TOYOTA has developed the iQ with a 1.3L engine for the Scion brand in USA. Due to the importance of fun-to-drive factor for the Scion brand image, a responsive driving performance is required even with compact packaging and a small engine. In addition, because of the recent attention to global-warming and energy issues on a global scale, development of vehicles with high fuel economy is one of the most important issues for a car manufacturer. Therefore, it is necessary for a vehicle to have both high driving performance and fuel economy. TOYOTA has adopted the CVT-i as the transmission for this purpose. The following were achieved by adopting the CVT-i as the transmission for the iQ(1.3L). 1 Responsive driving performance with shift changes without a time lag. 2 Compact transmission for efficient vehicle packaging 3 Class-leading fuel economy performance. Moreover, it was developed with adjustments for the US market by improving the shift schedule for a linear acceleration feel.
Technical Paper

New Drivetrain for Toyota's Flagship Lexus LFA Sports Car

2011-04-12
2011-01-1427
Toyota Motor Corporation has developed a new drivetrain for their flagship Lexus LFA sports car. Passionate driving experience was pursued at the forefront of development. Superior vehicle performance, handling, and responsiveness that seem to anticipate the driver's intentions are achieved. Special vehicle packaging and component placement are adopted in the LFA in order to realize such performance. The engine, clutch, and front counter gear are positioned at the front of the vehicle, and the transaxle at the rear. The engine and transaxle are connected by a rigid torque tube. The transaxle is an automated manual transmission equipped with an electrohydraulic actuator for controlling both the shift and clutch operations. This actuator enables accurate control of the transmission and extremely quick response to shift paddle operation by the driver. This paper describes a general outline of the drivetrain and each component that has significantly contributed to LFA product appeal.
Technical Paper

A Study of Mixed-FAME and Trace Component Effects on the Filter Blocking Propensity of FAME and FAME Blends

2010-10-25
2010-01-2116
Previous studies have investigated the impacts of biofuel usage on the performance, drivability and durability of modern diesel engines and exhaust after-treatment systems including test work with different types, concentrations and mixtures of bio fuel components. During this earlier work vehicle fuel filter blocking issues were encountered during a field trial using various types of EN 14214 compliant Fatty Acid Methyl Ester (FAME) blended into EN 590 diesel. This paper summarises a subsequent literature review that was carried out looking into potential causes of this filter blocking and further work that was then carried out to expand on the findings. From this, a laboratory study was carried out to assess the increase in fuel filter blocking tendency (FBT) when various FAMEs from mixed sources were blended into EN 590 diesel at different concentrations, including levels above those currently allowed in the European market.
Technical Paper

Two-Dimensional Temperature Measurements in Diesel Piston Bowl Using Phosphor Thermometry

2009-09-13
2009-24-0033
Phosphor thermometry was used during fuel injection in an optical engine with the glass piston of reentrant type. SiO2 coated phosphor particle was used for the gas-phase temperature measurements, which gave much less background signal. The measurements were performed in motored mode, in combustion mode with injection of n-heptane and in non-combustion mode with injection of iso-octane. In the beginning of injection period, the mean temperature of each injection cases was lower than that of the motored case, and temperature of iso-octane injection cases was even lower than that of n-heptane injection cases. This indicates, even if vaporization effect seemed to be the same at both injection cases, the effect of temperature decrease changed due to the chemical reaction effect for the n-heptane cases. Chemical reaction seems to be initiated outside of the fuel liquid spray and the position was moving towards the fuel rich area as the time proceeds.
X