Refine Your Search

Topic

Author

Search Results

Technical Paper

Structural Design Technology for Brake Squeal Reduction Using Sensitivity Analysis

2010-10-10
2010-01-1691
The finite element method (FEM) is effective for analyzing brake squeal phenomena. Although FEM analysis can be used to easily obtain squeal frequencies and complex vibration modes, it is difficult to identify how to modify brake structure design or contact conditions between components. Therefore, this study deals with a practical design method using sensitivity analysis to reduce brake squeal, which is capable of optimizing both the structure of components and contact conditions. A series of analysis processes that consist of modal reduction, complex eigenvalue analysis, sensitivity analysis and optimization analysis is shown and some application results are described using disk brake systems.
Technical Paper

Development of High-Strength Aluminum Piston Material

2010-04-12
2010-01-0220
Mass reduction of parts is growing in importance as a means for reducing CO2 emissions from vehicles.The aim of the present research was to contribute to further mass reduction of pistons by developing a new aluminum casting material with highest level of fatigue strength. This goal was achieved using a development concept of creating a homogeneous structure in which Ti was added to create a fine structure and appropriate quantities of Fe and Mn were added to form a compound that is stable at high temperatures. Stand-alone tests of prototype pistons fabricated using the developed material show that the material is 14% stronger than the conventional material, thereby enabling increases in power and mass reduction.
Technical Paper

Development of Pitting Resistant Steel for Gears

2006-04-03
2006-01-0895
Newly designed gears are subject to higher loads that demand a steel that is capable of greater pitting resistance. The application of shot peening to gears has been increasing to improve tooth root strength, but pitting resistance had not been necessarily high. This study examines the effect of alloying additions mainly on tempering resistance and the formation of a non-martensitic layer. The developed high Si-Mo type steel shows excellent pitting resistance, even in shot peened gears, as compared to that of conventional steels due to high tempering resistance and the thin, uniform non-martensitic layer. This new steel is of practical use in some multi-speed automatic transmission gears.
Technical Paper

Development of Three-way Catalyst Using Composite Alumina-Ceria-Zirconia

2003-03-03
2003-01-0811
To realize the high performance of the three-way catalyst, this development focused on the heat resistance of the CeO2-ZrO2 solid solution (CZ) that possesses the oxygen storage capacity (OSC). A new concept of the OSC compound with high durability is proposed. We devised a new method of inhibiting the coagulation of the primary CZ particles by placing diffusion barrier layers made of alumina among the primary CZ particles. This material is called “ACZ”. The specific surface area of ACZ was larger than that of the conventional CZ after durability test. The sintering of Pt on the ACZ-added catalyst is inhibited and the crystal size of CZ in the ACZ-added catalyst is smaller than that in the CZ-added catalyst. The OSC and the light off temperature of the ACZ-added catalyst are improved.
Technical Paper

First Order Analysis of Low Frequency Disk Brake Squeal

2001-10-28
2001-01-3136
Reducing disk brake squeal, especially low frequency disk brake squeal (1-5kHz), is an important technical issue in vehicles. The disk brake squeal mechanism has been shown in many papers (1), (2), (3), (4), (5), (6), (7), (8) and (9). Recently, the disk brake squeal comes to be simulated by Finite Element Analysis (FEA) for disk brake design (10), (11), (12), (13), (14), (15), (16), (17), (18) and (19). Though FEA is useful, it is sometimes difficult to modify in large when the prototype of disk brake system has been designed. First Order Analysis gives design concepts, which should be done before FEA. This paper shows First Order Analysis of low frequency disk brake squeal. The equation of motion is shown in 4 degrees of freedom model. In this equation the generalized force matrix is composed of the variations of pressure and friction force between each brake pad and brake disk. The generalized force matrix is arranged with a symmetric matrix and an anti-symmetric matrix.
Technical Paper

Flow Noise Reduction upon Quick Opening the Throttle

2001-04-30
2001-01-1429
With the advance in modularization of engine parts in recent years, there is increased use of plastic-made products in air intake systems. Plastic-made intake manifolds (Fig. 1) provide many advantages including reduced weight, reduced cost, and lower intake air temperatures. However, these manifolds have one disadvantage when compared with conventional aluminum-made intake manifolds, in that they transmit more noise because of their lower material density. For example, plastic intake manifolds of early development often generate flow noise when the throttle is opened quickly. With conventional aluminum intake manifolds, this flow noise had generated, but was not heard. This flow noise is presumed to be generated because of high-speed airflow generated when the throttle is opened quickly, but the mechanism of this noise generation has not been clarified.
Technical Paper

Development of the Automotive Exhaust Hydrocarbon Adsorbent

2001-03-05
2001-01-0660
The hydrocarbon adsorption volume character of zeolite was studied. Specifically, the relationship between aluminum content and zeolite hydrocarbon adsorption was investigated, as a potential hydrocarbon adsorbent for exhaust gas. The study also analyzed the relationship between hole diameter and zeolite hydrocarbon adsorption. It was found that hydrocarbon adsorption increased with decreasing aluminum content. Zeolite with a pore size approximately 0.1nm greater than the diameter of hydrocarbon molecules showed the best performance. Zeolites with two different pore sizes were mixed, and succeeded in adsorbing hydrocarbons of carbon number 3 and above. Silver (Ag) ion exchanged zeolite was also used to increase the adsorption of exhaust gas hydrocarbons, including those of carbon number 2.
Technical Paper

Development of alloy cast iron for press die

2000-06-12
2000-05-0194
This paper describes the development of alloy cast iron that can be used for the cutting edges of the trimming die of a press die. Usually, a block of tool steel or steel casting is inserted at the cutting edge of the trimming die of a press die. However, we unified the structure part and the cutting-edge part of a press die with alloy cast iron. As it can''t bear as the cutting edge in this state, the cutting edge is processed by flame-hardening. After the flame- hardening, we developed the alloy cast iron so that enough hardness may be obtained by natural air cooling. Thereby, the machining of the installation seat of the cutting edge decreased and the expense of dies has been reduced.
Technical Paper

Thin wall and lightweight cylinder block production technology

2000-06-12
2000-05-0067
The automobile industry currently faces many challenges which may greatly impact on its foundry operations. One of these challenges, consumers'' demand for greater fuel efficiency, can be met by reducing the weight of castings used in automobiles, and minimizing engineering tolerances. In answer to this particular demand, engine foundries have begun to either produce cylinder blocks or other castings with aluminum rather than cast iron. However, if a reduction in weight (thin wall and near-net shaping) can be realized with cast iron, there would be numerous merits from the perspective of cost and compactness and there would be much more flexibility in automotive parts design.
Technical Paper

Method of Fatigue Life Estimation for Spot-Welded Structures

2000-03-06
2000-01-0779
A method of fatigue life estimation for the spot-welds of vehicle body structures by means of Finite Element Analysis (FEA) was studied. 6 general forces applied to a nugget of spot-weld under multiaxial loads were determined and the Nominal Structural Stress (σns) was calculated from them. It was confirmed that fatigue strength of the spot-welds under various multiaxial loads could be estimated universally by using σns. Based on the theory of elasticity of plates, stress of spot-weld nugget was analyzed. The theoretical equations for determining the principal stress at the nugget edge from6 general forces acting on a nugget were derived. And the principal stress was defined as the σns. The value of σns was determined by FEM that used a solid model and compared with the theoretical calculation value. They agreed quite well. Fatigue tests of DC specimens under various multiaxial loads (shear plus cross tension and tensile shear plus torsion) were conducted.
Technical Paper

Recycling Technology of Surface Material for Interior Trims

2000-03-06
2000-01-0741
Two-layered surface materials composed of a thermoplastic olefin elastomer (TPO) skin and a cross-linked polypropylene (PP)foam are increasingly replacing the conventional PVC skin/PVC foam for interior trims. In the past, recycled material obtained by melt-blending TPO skin and PP foam could not be re-used for TPO skin because of its appearance. A new recycling technology using the reaction biaxial extruder with a reaction agent can decompose the network structure of PP foam. As a result, PP foam is dispersed into TPO uniformly and the recycled material has properties and an appearance similar to virgin TPO. These new properties may allow the application of the recycled material as a surface material.
Technical Paper

Development of P/M Titanium Engine Valves

2000-03-06
2000-01-0905
In October 1998, a new mass-produced car with titanium engine-valves was released from TOYOTA Motor Corporation. Both intake and exhaust valves were manufactured via a newly developed cost-effective P/M forging process. Furthermore, the material which was specially designed for the exhaust one is a unique titanium metal matrix composite (MMC). This paper discusses the materials and manufacturing methods used. The tensile, fatigue strength and creep resistance of the MMC are always superior to those for the typical heat-resistant steel of 21-4N. Both valves have achieved sufficient durability and reliability with a manufacturing cost acceptable for mass-produced automobile parts.
Technical Paper

Deactivation Mechanism of NOX Storage-Reduction Catalyst and Improvement of Its Performance

2000-03-06
2000-01-1196
A lean burn engine is effective in reducing fuel consumption. NOX storage-reduction catalysts (NSR catalyst) have been developed for these engines. In order to improve the performance of NSR catalysts, suppression of sulfur poisoning, which is one of the main causes of NSR catalyst deactivation, must be improved. In this paper, the sulfur desorption phenomenon has been analyzed from a novel point of view. Based on these results, an NSR catalyst with improved sulfur resistance has been developed by incorporation of highly dispersed titania, and use of a heat resistant zirconia with enhanced basicity.
Technical Paper

MMC All Aluminum Cylinder Block for High Power SI Engines

2000-03-06
2000-01-1231
An all aluminum cylinder block with a Metal Matrix Composite (MMC) cylinder bore was developed which made it possible to re-design the base engine for high performance with a bore-to-bore distance as narrow as 5.5mm. The cylinder block is an open deck type and the MMC preform consists of alumina-silica fibers and mulite particles. A laminar flow die cast process was selected to ensure defect-free MMC bore quality. To insure good lubrication, electrochemical machining was applied to the bore surface. By use of radioisotope(RI) measurements, MMC reinforcement was optimized for wear characteristics. Particular attention was paid to use of fuels with high sulfur levels.
Technical Paper

Numerical Simulation of Deactivation Process of Three-way Catalytic Converters

2000-03-06
2000-01-0214
This paper presents the numerical simulation method to predict the deactivation process of three-way catalytic converters. Three-way catalytic converter's deactivation typically results from thermal and chemical mechanisms. The major factor of thermal deactivation is the sintering of noble metal particles, which is known to depend on the ageing temperature and the oxygen concentration in the exhaust gas. The chemical deactivation is mainly caused by the poisoning, which has two effects on the catalyst deactivation. One effect is the loss of the catalyst activity, which is expressed by reduced frequency factors of reaction rates. Another effect is the suppression of the noble metal sintering. Poison deposits prevent the noble metal particles from moving in the washcoat, assisted by the reduced thermal loading of reaction heats, which is caused by the loss of the catalyst activity. Modeling these deactivation factors, we propose the rate expression of noble metal sintering.
Technical Paper

A New Proportional Collection System for Extremely Low Emission Measurement in Vehicle Exhaust

1999-05-03
1999-01-1460
A new proportional collection system for extremely low tailpipe emission measurement in transient conditions has been developed. The new system can continuously sample a minute flow of exhaust gas, at a rate that is proportional to the engine exhaust rate. A zero grade gas dilution technique is utilized to prevent the influence of pollutants in atmospheric air that are the same concentration level as those in the exhaust gas. The system has accuracy within ±5%. For the direct exhaust gas flow meter, a pitot tube type flow meter is utilized as it is simple, heat resistant, sufficiently accurate and has low flow-resistance characteristic. For the collection and dilution controllers, two mass flow controllers (MFC) were adopted. The MFCs' output can be adversely influenced by variation of the specific heat of the sample gas, resulting in flow reporting error.
Technical Paper

Prediction of the Life of CVJ Boot in Design Stage and Establishment of an Optimal Design Method with FEA

1998-02-23
980847
In a stage of designing a CVJ boot, analytic conditions of FEA method are established so that values calculated with the FEA method coincide with the actually measured values. This has made it possible to predict the life of the boot under bench testing. Furthermore, the boot field life can also be predicted by the minor rule based on the joint-angle frequencies of a vehicle. As a result, it has become possible to determine an optimal configuration in the design stage and to decrease the number of test cycles, resulting in reduced development lead time.
Technical Paper

Development of Toyota 1ZZ-FE Engine

1998-02-23
981087
The 1ZZ-FE engine is a newly developed in-line 4-cylinder, 1.8-liter, DOHC 4-valve engine mounted in the new Corolla. Abounding in new technologies including the laser-clad valve seat, high-pressure die-cast aluminum cylinder block, and the small-pitch chain drive DOHC, coupled with the fundamentally reviewed basic specifications, the new engine is compact and lightweight, offering high performance and good fuel economy. Anticipating even more stringent emission regulations in the future, in addition to the revision of the engine body, the layout of the exhaust system has been improved to enhance warm-up performance of the converter.
Technical Paper

Development of Ductile Cast Iron Flywheel Integrated with Hot Form-Rolled Gear

1998-02-01
980568
New ductile cast iron flywheel integrated with gear and its manufacturing process were developed to reduce the manufacturing steps and cost compared with conventional flywheel around which a steel ring gear is fit. In this process, the ring gear teeth around a cast iron flywheel are formed directly in net shape and free from any defect by the hot form-rolling method, followed by the thermomechanical treatment in a short time. The gear is superior to that made by the conventional hobbing and heat treatment in accuracy, strength and anti-wear property.
Technical Paper

Dynamic Finite Element Analysis of Window Regulator Linkage System Using LS-DYNA

1998-02-01
980308
One of the main types of window regulators that are in current use is the X-arm type window regulator, which utilizes a linkage mechanism to raise and lower the window glass. One of the evaluation items that are necessary in analyzing the performance of a window regulator is the operating force that is required to operate the handle for moving up the window glass. It is difficult to estimate this force during the design stage. We have to take into consideration factors such as the influences of the various types of contacts and the elastic deformation of linkage arm. Therefore, we used the LS-DYNA, which is dynamic and kinematic nonlinear finite element analysis code, to develop a technique for analyzing the handle operating force. Then, we used this technique to conduct parameter studies to identify the factors that are believed to exert a greater influence on the operating force.
X