Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Mechanism of Turbocharger Coking in Gasoline Engines

2015-09-01
2015-01-2029
Turbocharged downsized gasoline engines have been widely used in the market as one of the measures to improve fuel economy. Coking phenomena in the lubricating circuit of the turbocharger unit is a well-known issue that may affect turbocharger efficiency and durability. Laboratory rig test such as ASTM D6335 (TEOST 33C) has been used to predict this phenomenon as a part of engine oil performance requirements. On the other hand, laboratory tests sometimes have difficulty reproducing the actual mechanism of coking caused by engine oil degradation. Accumulation of insoluble material is one of the important gasoline engine oil degradation modes. The influence of temperature and insoluble concentration were investigated based on actual used engine oils collected in the field.
Journal Article

Engine Oil Development for Preventing Pre-Ignition in Turbocharged Gasoline Engine

2014-10-13
2014-01-2785
Gasoline engine downsizing combined with a turbocharger is one of the more effective approaches to improve fuel efficiency without sacrificing power performance. The benefit comes from lower pumping loss, lower mechanical friction due to ‘downsizing’ of the engine displacement and ‘down-speeding’ of the engine by using higher transmission gear ratios which is allowed by the higher engine torque at lower engine speeds. However abnormal combustion referred to as Low-Speed Pre-ignition (LSPI) is known to be able to occur in low-speed and high-torque conditions. It is a potential restriction to maximize the engine performance and its benefit, therefore prevention of LSPI is strongly desired for long-term durability of engine performance. According to recent technical reports, auto-ignition of an engine oil droplet in a combustion chamber is believed to be one of major contributing factors of LSPI and its formulations have a significant effect on LSPI frequency.
Technical Paper

Numerical Modeling of the Contamination of Engine Oil by Fuel Combustion Byproducts

2014-10-13
2014-01-2574
This paper focuses on the fuel contribution to crankcase engine oil degradation in gasoline fueled engines in view of insoluble formation. The polymerization of degraded fuel is responsible for the formation of insoluble which is considered as a possible cause of low temperature sludge in severe vehicle operating conditions. The main objective of the study is to understand the mechanism of formation of partially oxidized compounds from fuel during the combustion process, before their accumulation in the crankcase oil. A numerical method has been established to calculate the formation of partially oxidized compounds in spark ignition engines directly, by using 3D CFD. To further enable the possibility of running a large number of simulations with a realistic turn-around time, a coupled approach of 3D CFD (with simplified chemical mechanism) and 0D Kinetics (with full chemical mechanism) is proposed here.
X