Refine Your Search

Search Results

Viewing 1 to 5 of 5
Journal Article

Coupled-SEA Application to Full Vehicle with Numerical Turbulent Model Excitation for Wind Noise Improvement

2021-08-31
2021-01-1046
Wind noise is becoming a higher priority in the automotive industry. Several past studies investigated whether Statistical Energy Analysis (SEA) can be utilized to predict wind noise. Because wind noise analysis requires both radiation and transmission modeling in a wide frequency band, turbulent-structure-acoustic-coupled-SEA is being used. Past research investigated coupled-SEA’s benefit, but the model is usually simplified to enable easier consideration on the input side. However, the vehicle is composed of multiple interior parts and possible interior countermeasure consideration is needed. To enable this, at first, a more detailed coupled-SEA model is built from the acoustic-SEA model which has a larger number of degrees of freedom for the interior side. Then, the model is modified to account for sound radiation effects induced by turbulent and acoustic pressure.
Journal Article

Development of Full-Scale Wind Tunnel for Enhancement of Vehicle Aerodynamic and Aero-Acoustic Performance

2014-04-01
2014-01-0598
A new wind tunnel was developed and adopted by Toyota Motor Corporation in March 2013. This wind tunnel is equipped with a 5-belt rolling road system with a platform balance that enables the flow simulation under the floor and around the tires in on-road conditions. It also minimizes the characteristic pulsation that occurs in wind tunnels to enable the evaluation of unsteady aerodynamic performance aspects. This paper describes the technology developed for this new wind tunnel and its performance verification results. In addition, after verifying the stand-alone performance of the wind tunnel, a vehicle was placed in the tunnel to verify the utility of the wind tunnel performance. Tests simulated flow fields around the vehicle in on-road conditions and confirmed that the wind tunnel is capable of evaluating unsteady flows.
Technical Paper

Computational Analysis of Flow Around a Simplified Vehicle-Like Body

1993-03-01
930293
The flow around a simplified vehicle-like body was computed. The aerodynamic characteristics of this body depended on the afterbody geometry, especially the rear slant angle. In order to examine reliability of computation, the computations were performed for various rear slant angles. Regarding the computational method, two kinds of methods were applied: a Navier-Stokes solver that employs a k- ε turbulence model and a quasi-direct simulation with a third-order upwind difference scheme. Comparing the results with a wind tunnel test data of the flow fields and aerodynamic forces, it was found that, the k- ε model had potential for prediction of flow field and the quasi-direct simulation for prediction of aerodynamic forces.
Technical Paper

Improvement of Rear Axle Cooling Performance

1988-11-01
881738
On the basis of the investigation of the airflow and temperature distributions between the car underside and the wind tunnel floor, methods to improve, the differential gear lubricant cooling performance in high speed running have been studied. It has been clarified that the differential gear lubricant temperature is nearly dominated by the convective heat transfer coefficient and the air temperature around the differential gear carrier. Control of the heat transfer coefficient and the air temperature around the differential gear carrier through the modification of the car underside configuration was found to be the most efficient method to decrease the temperature of the differential gear lubricant.
Technical Paper

Aerodynamic Effects of an Overtaking Articulated Heavy Goods Vehicle on Car-Trailer-An Analysis to Improve Controllability

1987-10-01
871919
It is well known and a common experience among drivers that controllability and stability of a car-trailer combination is affected when an articulated Heavy Goods Vehicle overtakes. In this paper, aerodynamic effects to a car-trailer combination when it is overtaken by an articulated HGV, have been analyzed experimentally using 1/20 scale models in wind tunnel, and a method to suppress this phenomenon has been investigated. The dynamic behaivor of a car-trailer combination is simulated by a simple mathematical model. The result shows that a car-trailer combination can be stable following the addittion of aerodynamic devices to each side of the vehicle. This simulated result is verified by the on-read test.
X