Refine Your Search

Search Results

Viewing 1 to 6 of 6
Journal Article

Automated Decomposition and Allocation of Automotive Safety Integrity Levels Using Exact Solvers

2015-04-14
2015-01-0156
The number of software-intensive and complex electronic automotive systems is continuously increasing. Many of these systems are safety-critical and pose growing safety-related concerns. ISO 26262 is the automotive functional safety standard developed for the passenger car industry. It provides guidelines to reduce and control the risk associated with safety-critical systems that include electric and (programmable) electronic parts. The standard uses the concept of Automotive Safety Integrity Levels (ASILs) to decompose and allocate safety requirements of different stringencies to the elements of a system architecture in a top-down manner: ASILs are assigned to system-level hazards, and then they are iteratively decomposed and allocated to relevant subsystems and components. ASIL decomposition rules may give rise to multiple alternative allocations, leading to an optimization problem of finding the cost-optimal allocations.
Technical Paper

Multiphase Flow Simulations of Poppet Valve Noise and Vibration

2015-04-14
2015-01-0666
A deeper understanding of the complex phenomenology associated with the multiphase flow-induced noise and vibration in a dynamic valve is of critical importance to the automotive industry. To this purpose, a two-dimensional axisymmetric numerical model has been developed to simulate the complex processes that are responsible for the noise and vibration in a poppet valve. More specifically, an Eulerian multiphase flow model, a dynamic mesh and a user-defined function are utilized to facilitate the modeling of this complicated two-phase fluid-structure interaction problem. For a two-phase flow through the valve, our simulations showed that the deformation and breakup of gas bubbles in the gap between the poppet and the valve seat generates a vibration that arises primarily from the force imbalance between the spring and the two-phase fluid flow induced forces on the poppet.
Journal Article

Optimal Torque Control for an Electric-Drive Vehicle with In-Wheel Motors: Implementation and Experiments

2013-04-08
2013-01-0674
This paper presents the implementation of an off-line optimized torque vectoring controller on an electric-drive vehicle with four in-wheel motors for driver assistance and handling performance enhancement. The controller takes vehicle longitudinal, lateral, and yaw acceleration signals as feedback using the concept of state-derivative feedback control. The objective of the controller is to optimally control the vehicle motion according to the driver commands. Reference signals are first calculated using a driver command interpreter to accurately interpret what the driver intends for the vehicle motion. The controller then adjusts the braking/throttle outputs based on discrepancy between the vehicle response and the interpreter command.
Journal Article

Vehicle Safety Communications - Applications: Multiple On-Board Equipment Testing

2011-04-12
2011-01-0586
The United States Department of Transportation (USDOT) and the Crash Avoidance Metrics Partnership-Vehicle Safety Communications 2 (CAMP-VSC2) Consortium (Ford, General Motors, Honda, Mercedes-Benz, and Toyota) initiated, in December 2006, a three-year collaborative effort in the area of wireless-based safety applications under the Vehicle Safety Communications-Applications (VSC-A) Project. The VSC-A Project developed and tested Vehicle-to-Vehicle (V2V) communications-based safety systems to determine if Dedicated Short Range Communications (DSRC) at 5.9 GHz, in combination with vehicle positioning, would improve upon autonomous vehicle-based safety systems and/or enable new communications-based safety applications.
Technical Paper

An Analysis for Floating Bearings in a Turbocharger

2011-04-12
2011-01-0375
A comprehensive analysis has been performed for floating bearings applied in a turbocharger. It is found that Couette power loss for a full-floating bearing (the floating ring rotates) decreases with increasing inner and outer clearances, while its Poiseuille power loss increases with increasing inner and outer film clearances. In comparison with a semi-floating bearing (the floating ring does not rotate), a full-floating bearing can reduce both Couette and Poiseuille power losses. However, floating bearing is found to have a smaller minimum film thickness for a given dynamic loading from rotor-dynamics. The total power loss reduction for typical full-floating bearings ranges from 13% to 27%, which matches well with some published experimental data. In general, the speed ratio increases with increasing outer film clearance, while it decreases with increasing inner film clearance because of shear stresses on the outer and inner film.
Technical Paper

A Novel Air Hybrid Engine Configuration Utilizing Cam-Based Valvetrain

2011-04-12
2011-01-0871
In this work, a new air hybrid engine configuration is introduced in which cam-based valvetrain along with three-way and unidirectional valves make the implementation of different air hybrid engine operational modes possible. This configuration simplifies the air hybrid engine valvetrain significantly and relaxes the necessity of using fully flexible valvetrain in air hybrid engines. Utilizing the proposed configuration allows compression braking (CB), air motor (AM), startup and conventional modes of operation to be realized. The proposed configuration is modeled in GT-Power and the deceleration of a typical vehicle, utilizing only regenerative braking system, is simulated. The efficiency of the system in storing the vehicle's kinetic energy is determined using second law definition for efficiency. The stored energy can be used to either start up the engine or run the off-engine accessories. These two modes are studied and compared.
X