Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Analysis of the Event Data Recorder (EDR) Function of a GM Active Safety Control Module (EOCM3 LC)

2024-04-09
2024-01-2888
The Advanced Driver Assistance System (ADAS) is a comprehensive feature set designed to aid a driver in avoiding or reducing the severity of collisions while operating the vehicle within specified conditions. In General Motors (GM) vehicles, the primary controller for the ADAS is the Active Safety Control Module (ASCM). In the 2013 model year, GM introduced an ASCM utilizing the GM internal nomenclature of External Object Calculation Module (EOCM) in some of their vehicles produced for the North American market. Similar to the Sensing and Diagnostic Module (SDM) utilized in the restraints system, the EOCM3 LC contains an Event Data Recorder (EDR) function to capture and record information surrounding certain ADAS or Supplemental Inflatable Restraint (SIR) events. The ASCM EDR contains information from external object sensors, various chassis and powertrain control modules, and internally calculated data.
Technical Paper

Enhancing Lateral Stability in Adaptive Cruise Control: A Takagi-Sugeno Fuzzy Model-Based Strategy

2024-04-09
2024-01-1962
Adaptive cruise control is one of the key technologies in advanced driver assistance systems. However, improving the performance of autonomous driving systems requires addressing various challenges, such as maintaining the dynamic stability of the vehicle during the cruise process, accurately controlling the distance between the ego vehicle and the preceding vehicle, resisting the effects of nonlinear changes in longitudinal speed on system performance. To overcome these challenges, an adaptive cruise control strategy based on the Takagi-Sugeno fuzzy model with a focus on ensuring vehicle lateral stability is proposed. Firstly, a collaborative control model of adaptive cruise and lateral stability is established with desired acceleration and additional yaw moment as control inputs. Then, considering the effect of the nonlinear change of the longitudinal speed on the performance of the vehicle system.
Technical Paper

Investigation of Diffuse Axonal Injury in Rats Induced by the Combined Linear and Rotational Accelerations Using Diffusion Tensor Imaging

2024-04-09
2024-01-2513
Diffuse Axonal Injury (DAI) is the most common type of traumatic brain injury, and it is associated with the linear and rotational accelerations resulting from head impacts, which often occurs in traffic related and sports accidents. To investigate the degree of influence of linear and rotational acceleration on DAI, a two-factor, two-level rat head impact experimental protocol involving linear and rotational acceleration was established using the L4(23) orthogonal table in this paper. Following the protocol, rats head was injured and diffusion tensor imaging (DTI) was performed at 24h post-injury to obtain the whole brain DAI injury, and the fractional anisotropy (FA) value of the corpus callosum was selected as the evaluation indicator. Using analysis of variance, the sum of squared deviations for the evaluation indicators was calculated to determine the degree of influence of linear acceleration and rotational acceleration on DAI. The results show that, 1.
Technical Paper

Multifactorial Mechanical Properties Study on Rat Skin at Intermediate Strain Rates - Using Orthogonal Experimental Design

2024-04-09
2024-01-2512
Most of the skin injuries caused by traffic accidents, sports, falls, etc. are in the intermediate strain rate range (1-100s-1), and the injuries may occur at different sites, impact velocities, and orientations. To investigate the multifactorial mechanical properties of rat skin at intermediate strain rates, a three-factor, three-level experimental protocol was established using the standard orthogonal table L9(34), which includes site (upper dorsal, lower dorsal, and ventral side), strain rate (1s-1, 10s-1, and 100 s-1), and sampling orientation (0°, 45°, and 90° relative to the spine). Uniaxial tensile tests were performed on rat skin samples according to the protocol to obtain stress-stretch ratio curves. Failure strain energy was selected as the index, and the influence of each factor on these indexes, the differences between levels of each factor, and the influence of errors on the results were quantified by analysis of variance (ANOVA).
Technical Paper

Estimating How Long In-Vehicle Tasks Take: Static Data for Distraction and Ease-of-Use Evaluations

2024-04-09
2024-01-2505
Often, when assessing the distraction or ease of use of an in-vehicle task (such as entering a destination using the street address method), the first question is “How long does the task take on average?” Engineers routinely resolve this question using computational models. For in-vehicle tasks, “how long” is estimated by summing times for the included task elements (e.g., decide what to do, press a button) from SAE Recommended Practice J2365 or now using new static (while parked) data presented here. Times for the occlusion conditions in J2365 and the NHTSA Distraction Guidelines can be determined using static data and Pettitt’s Method or Purucker’s Method. These first approximations are reasonable and can be determined quickly. The next question usually is “How likely is it that the task will exceed some limit?”
Technical Paper

Advanced Material Characterization of Hood Insulator Foams for Pedestrian Head Impact

2024-04-09
2024-01-2682
Hood insulators are widely used in automotive industry to improve noise insulation, pedestrian impact protection and to provide aesthetic appeal. They are attached below the hood panel and are often complex in shape and size. Pedestrian head impacts are highly dynamic events with a compressive strain rate experienced by the insulator exceeding 300/s. The energy generated by the impact is partly absorbed by the hood insulators thus reducing the head injury to the pedestrian. During this process, the insulator experiences multi-axial stress states. The insulators are usually made of soft multi-layered materials, such as polyurethane or fiberglass, and have a thin scrim layer on either side. These materials are foamed to their nominal thickness and are compression molded to take the required shape of the hood. During this process they undergo thickness reduction, thereby increasing their density.
Technical Paper

Comprehensive Evaluation of Behavioral Competence of an Automated Vehicle Using the Driving Assessment (DA) Methodology

2024-04-09
2024-01-2642
With the development of vehicles equipped with automated driving systems, the need for systematic evaluation of AV performance has grown increasingly imperative. According to ISO 34502, one of the safety test objectives is to learn the minimum performance levels required for diverse scenarios. To address this need, this paper combines two essential methodologies - scenario-based testing procedures and scoring systems - to systematically evaluate the behavioral competence of AVs. In this study, we conduct comprehensive testing across diverse scenarios within a simulator environment following Mcity AV Driver Licensing Test procedure. These scenarios span several common real-world driving situations, including BV Cut-in, BV Lane Departure into VUT Path from Opposite Direction, BV Left Turn Across VUT Path, and BV Right Turn into VUT Path scenarios.
Technical Paper

Dynamic Characterization of a Twin Plate Torque Converter Clutch During Controlled Slip

2024-04-09
2024-01-2715
This paper details testing for torque converter clutch (TCC) characterization during steady state and dynamic operation under controlled slip conditions on a dynamometer setup. The subject torque converter under test is a twin plate clutch with a dual stage turbine damper without a centrifugal pendulum absorber. An overview is provided of the dynamometer setup, hydraulic system and control techniques for regulating the apply pressure to the torque converter and clutch. To quantify the performance of the clutch in terms of control stability, pressure to torque relationship and the dynamic behavior during apply and release, a matrix of oil temperatures, output speeds, input torques, and clutch apply pressures were imposed upon the torque converter.
Technical Paper

Functional Safety Concept Design of Vehicle Steer-by-Wire System

2024-04-09
2024-01-2792
Steer-By-Wire (SBW) system directly transmits the driver's steering input to the wheels through electrical signals. However, the reliability of electronic equipment is significantly lower than that of mechanical structures, and the risk of failure increases, so it is important to conduct functional safety studies on SBW systems. This paper develops the functional safety of the SBW system according to the requirements of the international standard ISO26262, and first defines the relevant items and application scope of SBW system. Secondly, the Hazard and Operability (HAZOP) method was used to combine scenarios and possible dangerous events to carry out Hazard Analysis and Risk Assessment (HARA), and the Automotive Safety Integrity Level (ASIL) was obtained according to the three evaluation indicators of Exposure, Severity and Controlabillity, and then the corresponding safety objectives were established and Fault Tolerant Time Interval (FTTI) was set.
Journal Article

A Process to Characterize the Sound Directivity Pattern of AVAS Speaker

2023-05-08
2023-01-1095
Speaker performance in Acoustic Vehicle Alerting System (AVAS) plays a crucial role for pedestrian safety. Sound radiation from AVAS speaker has obvious directivity pattern. Considering this feature is critical for accurately simulating the exterior sound field of electrical vehicles. This paper proposes a new process to characterize the sound directivity pattern of AVAS speaker. The first step of the process is to perform an acoustic testing to measure the sound pressure radiated from the speaker at a certain number of microphone locations in a free field environment. Based on the geometry of a virtual speaker, the locations of each microphone and measured sound pressure data, an inverse method, namely the inverse pellicular analysis, is adopted to recover a set of vibration pattern of the virtual speaker surface. The recovered surface vibration pattern can then be incorporated in the full vehicle numerical model as an excitation for simulating the exterior sound field.
Technical Paper

A Data-Driven Framework of Crash Scenario Typology Development for Child Vulnerable Road Users in the U.S.

2023-04-11
2023-01-0787
Motor vehicle crashes involving child Vulnerable Road Users (VRUs) remain a critical public health concern in the United States. While previous studies successfully utilized the crash scenario typology to examine traffic crashes, these studies focus on all types of motor vehicle crashes thus the method might not apply to VRU crashes. Therefore, to better understand the context and causes of child VRU crashes on the U.S. road, this paper proposes a multi-step framework to define crash scenario typology based on the Fatality Analysis Reporting System (FARS) and the Crash Report Sampling System (CRSS). A comprehensive examination of the data elements in FARS and CRSS was first conducted to determine elements that could facilitate crash scenario identification from a systematic perspective. A follow-up context description depicts the typical behavioral, environmental, and vehicular conditions associated with an identified crash scenario.
Technical Paper

Cylindrical Li-Ion Cell Crush CAE Capability in Automotive Application

2023-04-11
2023-01-0509
The world is moving towards E-mobility solutions and Battery Electric Vehicles (BEVs) are the main enabler towards it. Li-ion cells are the fundamental building block of any BEVs. There are three common types of Li-ion cell design i.e., cylindrical cells, Prismatic Cells and Pouch cells. Ensuring safety of BEVs are critical to gain customer trust and acceptance over Internal Combustion Engine (ICE) vehicles. EV fire is found to be one of the major concerns related to using higher energy batteries. During a crash event, Post-Crash Electrical Integrity of the BEV is to be ensured and hence primary focus is on mitigation of Li-ion cell internal short circuit. It has been seen in prior published articles that cell internal short circuit can be triggered by physical intrusion of cell. This paper primarily focusses on simulating the mechanical behavior of cylindrical cell under various crush conditions.
Technical Paper

Characterization and Modeling of Instrument Panel Textile Trim Materials for Passenger Airbag Deployment Analysis

2023-04-11
2023-01-0930
Premium instrument panels (IPs) contain passenger airbag (PAB) systems that are typically comprised of a stiff plastic substrate and a soft ‘skin’ material which are adhesively bonded. During airbag deployment, the skin tears along the scored edges of the door holding the PAB system, the door opens, and the airbag inflates to protect the occupant. To accurately simulate the PAB deployment dynamics during a crash event all components of the instrument panel and the PAB system, including the skin, must be included in the model. It has been recognized that the material characterization and modeling of the skin tearing behavior are critical for predicting the timing and inflation kinematics of the airbag. Even so, limited data exists in the literature for skin material properties at hot and cold temperatures and at the strain rates created during the airbag deployment.
Journal Article

A Standard Set of Courses to Assess the Quality of Driving Off-Road Combat Vehicles

2023-04-11
2023-01-0114
Making manned and remotely-controlled wheeled and tracked vehicles easier to drive, especially off-road, is of great interest to the U.S. Army. If vehicles are easier to drive (especially closed hatch) or if they are driven autonomously, then drivers could perform additional tasks (e.g., operating weapons or communication systems), leading to reduced crew sizes. Further, poorly driven vehicles are more likely to get stuck, roll over, or encounter mines or improvised explosive devices, whereby the vehicle can no longer perform its mission and crew member safety is jeopardized. HMI technology and systems to support human drivers (e.g., autonomous driving systems, in-vehicle monitors or head-mounted displays, various control devices (including game controllers), navigation and route-planning systems) need to be evaluated, which traditionally occurs in mission-specific (and incomparable) evaluations.
Technical Paper

Virtual Testing of Front Camera Module

2023-04-11
2023-01-0823
The front camera module is a fundamental component of a modern vehicle’s active safety architecture. The module supports many active safety features. Perception of the road environment, requests for driver notification or alert, and requests for vehicle actuation are among the camera software’s key functions. This paper presents a novel method of testing these functions virtually. First, the front camera module software is compiled and packaged in a Docker container capable of running on a standard Linux computer as a software in the loop (SiL). This container is then integrated with the active safety simulation tool that represents the vehicle plant model and allows modeling of test scenarios. Then the following simulation components form a closed loop: First, the active safety simulation tool generates a video data stream (VDS). Using an internet protocol, the tool sends the VDS to the camera SiL and other vehicle channels.
Technical Paper

Analytical Failure Modeling of Thermal Interface Material in High Voltage Battery Modules in Electric Vehicle Crash Scenario

2023-04-11
2023-01-0521
Battery Electric Vehicles (BEVs) are becoming more competitive day by day to achieve maximum peak power and energy requirement. This poses challenges to the design of Thermal Interface Material (TIM) which maintains the cell temperature and ensure retention of cell and prevent electrolyte leak under different crash loads. TIM can be in the form of adhesives, gels, gap fillers. In this paper, TIM is considered as structural, and requires design balance with respect to thermal and mechanical requirements. Improving structural strength of TIM will have negative impact on its thermal conductivity; hence due care needs to be taken to determine optimal strength that meets both structural and thermal performance. During various crash conditions, due to large inertial force of cell and module assembly, TIM is undertaking significant loads on tensile and shear directions. LS-DYNA® is used as simulation solver for performing crash loading conditions and evaluate structural integrity of TIM.
Technical Paper

Study on Influencing Factors of Hippocampal Injury in Closed Head Impact Experiments of Rats Using Orthogonal Experimental Design Method

2023-04-11
2023-01-0001
The hippocampus plays a crucial role in brain function and is one of the important areas of concern in closed head injury. Hippocampal injury is related to a variety of factors including the strength of mechanical load, animal age, and helmet material. To investigate the order of these factors on hippocampal injury, a three-factor, three-level experimental protocol was established using the L9(34) orthogonal table. A closed head injury experiment regarding impact strength (0.3MPa, 0.5MPa, 0.7MPa), rat age (eight- week-old, ten-week-old, twelve-week-old), and helmet material (steel, plastic, rubber) were achieved by striking the rat's head with a pneumatic-driven impactor. The number of hippocampal CA3 cells was used as an evaluation indicator. The contribution of factors to the indicators and the confidence level were obtained by analysis of variance.
Technical Paper

Research on Lane-Changing Decision-Making Behavior of Intelligent Network-Connected Autonomous Vehicles

2022-12-22
2022-01-7066
With the rapid development of science and technology, the automobile industry is developing rapidly, and intelligent networking and autonomous driving have become new research hotspots. The safety and efficiency of vehicle driving has always been an important research topic in the transportation field. Due to reducing the participation of drivers, autonomous vehicles can reduce traffic accidents caused by human factors. While the development of intelligent networking can achieve information sharing between vehicles, and improve driving efficiency to a certain extent. Based on the game theory and the minimum safe distance condition, this paper establishes a lane changing decision model of intelligent network-connected autonomous vehicles, puts forward a game payoff function and analyzes the game strategy.
Technical Paper

An Automated Procedure for Implementing Steer Input during Ditch Rollover CAE Simulation

2022-10-05
2022-28-0365
Vehicle manufacturers conduct tests to develop crash sensing system calibrations. Ditch fall-over is one of a suite of laboratory tests used to develop rollover sensing calibrations that can trigger deployment of safety devices like roof rail airbags and seat belt pretensioners. The ditch fall-over test simulates a flat road followed by a ditch on one side of the road. The vehicle heads into the ditch and the driver applies swift steer input once the ditch slope is sensed. Typically, the steer input is applied when the two down-slope wheels on the ditch side enter the ditch. Multi-Body Dynamics (MBD) software can be used for virtual simulation of these test events. Conventionally in simulations, the vehicle-model is run without steer input and the marking line crossing time is observed/manually recorded from observation of simulation video. This recorded time is used to apply the steer input and the full event is then re-simulated.
Technical Paper

Improved Headlamp Fracture Modeling for Crash Sensing through Component Level Development

2022-10-05
2022-28-0091
The main objective of crash sensing is to predict a vehicle collision early in the event and command vehicle’s occupant protection systems to take appropriate actions to reduce the severity of crash injury. Currently Computer Aided Engineering (CAE) models are being used to predict the sensing signals with sensors placed at front end structure of the vehicle. The front-end structure as well as other critical components packaged in the front end play important role in absorbing energy and provide sensing signals during impact, headlamp being one such critical components. The headlamp with its lens being the exterior surface, experience large magnitude of loads from barrier during full frontal, angled and offset impact. The impact with barrier usually results in scattered damage to the headlamp and its lens. In this paper, CAE model of headlamp has been improved to reflect similar deformation pattern as observed in physical tests.
X