Refine Your Search

Search Results

Viewing 1 to 9 of 9
Technical Paper

An Experimental Study Using Spark-Assisted Stratified Compression Ignition (SSCI) Hybrid Combustion Mode for Engine Particle Number (PN) Reduction in a High Compression Ratio Gasoline Engine

2016-04-05
2016-01-0758
Particle Number (PN) have already been a big issue for developing high efficiency internal combustion engines (ICEs). In this study, controlled spark-assisted stratified compression ignition (SSCI) with moderate end-gas auto-ignition was used for reducing PN in a high compression ratio gasoline direct injection (GDI) engine. Under wide open throttle (WOT) and Maximum Brake Torque timing (MBT) condition, high external cooled exhaust gas recirculation (EGR) was filled in the cylinder, while two-stage direct injection was used to form desired stoichiometric but stratified mixture. SSCI combustion mode exhibits two-stage heat release, where the first stage is associated with flame propagation induced by spark ignition and the second stage is the result of moderate end-gas auto-ignition without pressure oscillation at the middle or late stage of the combustion process.
Journal Article

Experimental Investigation of Different Blends of Diesel and Gasoline (Dieseline) in a CI Engine

2014-10-13
2014-01-2686
Combustion behaviour and emissions characteristics of different blending ratios of diesel and gasoline fuels (Dieseline) were investigated in a light-duty 4-cylinder compression-ignition (CI) engine operating on partially premixed compression ignition (PPCI) mode. Experiments show that increasing volatility and reducing cetane number of fuels can help promote PPCI and consequently reduce particulate matter (PM) emissions while oxides of nitrogen (NOx) emissions reduction depends on the engine load. Three different blends, 0% (G0), 20% (G20) and 50% (G50) of gasoline mixed with diesel by volume, were studied and results were compared to the diesel-baseline with the same combustion phasing for all experiments. Engine speed was fixed at 1800rpm, while the engine load was varied from 1.38 to 7.85 bar BMEP with the exhaust gas recirculation (EGR) application.
Technical Paper

Urea Decomposition at Low Temperature in SCR Systems for Diesel Engines

2014-10-13
2014-01-2808
Selective catalytic reduction (SCR) has been demonstrated as one of the most promising technologies to reduce NOx emissions from heavy-duty diesel engines. To meet the Euro VI regulations, the SCR system should achieve high NOx reduction efficiency even at low temperature. In the SCR system, NH3 is usually supplied by the injection of urea water solution (UWS), therefore it is important to improve the evaporation and decomposition efficiency of UWS at low temperature and minimize urea deposits. In this study, the UWS spray, urea decomposition, and the UWS impingement on pipe wall at low temperature were investigated based on an engine test bench and computational fluid dynamics (CFD) code. The decomposition of urea and deposits was analyzed using thermal gravimetric analysis (TGA), differential scanning calorimetry (DSC) and fourier transform infrared spectroscopy (FTIR).
Technical Paper

An Experimental Study of EGR-Controlled Stoichiometric Dual-fuel Compression Ignition (SDCI) Combustion

2014-04-01
2014-01-1307
Using EGR instead of throttle to control the load of a stoichiometric dual-fuel dieseline (diesel and gasoline) compression ignition (SDCI) engine with three-way catalyst (TWC) aftertreatment is considered a promising technology to address the challenges of fuel consumption and emissions in future internal combustion engines. High-speed imaging is used to record the flame signal in a single-cylinder optical engine with a PFI+DI dual injection system. The premixed blue flame is identified and separated using green and blue channels in RGB images. The effects of injection timing on SDCI combustion are studied. An earlier injection strategy is found to be ideal for soot reduction; however, the ignition-injection decoupling problem results in difficulties in combustion control. It is also found that a split injection strategy has advantages in soot reduction and thermal efficiency.
Technical Paper

Closed-loop Control of Low Temperature Combustion Employing Ion Current Detecting Technology

2014-04-01
2014-01-1362
Based on high EGR rate, the low temperature combustion (LTC) has been studied widely, of which the application range is more extensive than the homogeneous charge compression ignition (HCCI) and premixed charge compression ignition (PCCI). As the high EGR rate would influence the condition of intake charge, it would also affect the combustion process and the HC emissions, thus the combustion stability of LTC would be lower than tradition diesel combustion. In this study, an ion current detecting technology was employed to explore the ion current at different EGR rates. Meanwhile, the combustion parameters were also investigated, which included the in-cylinder pressure and heat release rate. The CA50 and CAI50 were adopted as the phases of combustion and ion current, which respectively represented the crank angle of mid-point for the integrated heat release and integrated ion current. Then the correlation between CA50 and CAI50 was analysed.
Technical Paper

Effect of Injection Parameters and EGR on the Particle Size Distributions and Exhaust Emissions for Diesel and Biodiesel Fuels in CRDI Engine

2014-04-01
2014-01-1612
Biodiesel is considered one of the most promising alternative fuels to petrol fuels. In this study, an attempt has been made to investigate and compare the effect of fuel injection pressure, injection timing, and exhaust gas recirculation (EGR) ratio on the particle size distributions and exhaust emissions of the diesel and biodiesel produced from waste cooking oil (WCO) used in a common rail direct injection (CRDI) diesel engine. The engine tests were conducted at two injection pressures (800 and 1600 bar), two injection timings (25 and 5 deg before top dead center (bTDC) and three EGR ratios (10%, 20% 30%) at a constant fuel injection energy per stroke and engine speed (1200 r/min). The results indicated that carbon monoxide (CO) and hydrocarbon (HC) emissions of biodiesel were slightly lower, but nitrogen oxide (NOx) emissions were slightly higher, than those of diesel fuel under most operating conditions.
Technical Paper

Knocking Suppression using Stratified Stoichiometric Mixture in a DISI Engine

2010-04-12
2010-01-0597
Knocking is the main obstacle of increasing compression ratio to improve the thermal efficiency of gasoline engines. In this paper, the concept of stratified stoichiometric mixture (SSM) was proposed to suppress knocking in gasoline engines. The rich mixture near the spark plug increases the speed of the flame propagation and the lean mixture in the end gas suppresses the auto ignition. The overall air/fuel ratio keeps stoichiometric to solve the emission problem using three way catalysts (TWC). Moreover, both the rich zone and lean zone lead to soot free combustion due to homogeneous mixture. The effect on the knocking of homogeneous and stratified mixture was studied in a direct injection spark ignition (DISI) engine using numerical simulation and experimental investigation respectively.
Technical Paper

Coordinated Control of EGR and VNT in Turbocharged Diesel Engine Based on Intake Air Mass Observer

2002-03-04
2002-01-1292
Coordinated EGR-VNT control based on the intake air mass observer is presented in this paper to deal with the transient AFR control of turbocharged diesel engine. The air mass model embedded in the observer is a Takagi-Sugeno fuzzy neural network trained with transient simulation results. It can predict the charged fresh air mass entering the cylinder. In a high load region, when EGR is not effective, the coordinated EGR-VNT control will also bring benefits to the transient air-fuel-ratio control. The simulation results of TDI engine model verify that the transient control strategy will allow a better control of the intake air mass, and thus improve air-fuel-ratio control and reduce NOx emission in transients.
Technical Paper

Simultaneous Reductions in Diesel NOx and Smoke Emissions with Aqueous Metal-Salt Solutions Directly Injected into the Combustion Chamber

1996-05-01
961164
The effect of several aqueous metal-salt solutions on NOx and smoke lowering in an IDI diesel engine were examined. The solutions were directly injected into a divided chamber independent of the fuel injection. The results showed that significant lowering in NOx and smoke over a wide operation range could be achieved simultaneously with alkali metal solutions which were injected just prior to the fuel injection. With sodium-salt solutions, for instance, NOx decreased by more than 60 % and smoke decreased 50 % below conventional operation. The sodium-salt solution reduced dry soot significantly, while total particulate matter increased with increases in the water soluble fractions.
X