Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Comparison of Spray Collapses from Multi-Hole and Single-Hole Injectors Using High-Speed Photography

2020-04-14
2020-01-0321
In this paper, the differences between multi-hole and single-hole spray contour under the same conditions were compared by using high-speed photography. The difference between the contour area of multi-hole and that of single-hole spray was used as a parameter to describe the degree of spray collapse. Three dimensionless parameters (i.e. degree of superheat, degree of undercooling, and nozzle pressure ratio) were applied to characterize inside-nozzle thermodynamic, outside-nozzle thermodynamic and kinetic factors, respectively. In addition, the relationship between the three dimensionless parameters and the spray collapse was analyzed. A semi-empirical equation was proposed for evaluation of the degree of collapse based on dimensionless parameters of flash and non-flash boiling sprays respectively.
Technical Paper

Effect of Single and Double-Deck Pre-Chamber Designs to the Combustion Characteristics of Premixed CH4 /Air

2018-09-10
2018-01-1688
An experiment was carried out to investigate the effect of single and double-deck pre-chamber on the combustion characteristics of premixed CH4/air in a constant volume vessel using schlieren method. A special design was proposed for the visualization of the pre-chamber. Combustion with different initial temperatures (300 K, 400 K, 500 K) were observed at stoichiometric ratio to lean-burn limit. Although single-deck pre-chamber has advantages over double-deck pre-chamber in both initial flame development duration and main combustion duration, the latter could extend the lean-burn limit by up to 0.3 and promote the stability of ignition. It is also found that extensive distribution of active species in main chamber before ignition can accelerate speed of flame propagation enormously.
Technical Paper

Characterizing Propane Flash Boiling Spray from Multi-Hole GDI Injector

2018-04-03
2018-01-0278
In this research, propane flash boiling sprays discharged from a five-hole gasoline direct injector were studied in a constant volume vessel. The fuel temperature (Tfuel) ranged from 30 °C to 90 °C, and the ambient pressure (Pamb) varied from 0.05 bar to 11.0 bar. Different flash boiling spray behavior compared to that under sub-atmospheric conditions was found at high Pamb. Specifically, at the sub-atmospheric pressures, the individual flashing jets merged into one single jet due to the strong spray collapse. In contrast, at Pamb above 3.0 bar and Tfuel above 50 °C, the spray collapse was mitigated and the flashing jets were separated from each other. Further analyses revealed that the mitigation of spray collapse at high Pamb was ascribed to the suppression of jet expansion. In addition, it was found that the spray structure was much different at similar Rp, indicating that Rp lacked the generality in describing the structure of flash boiling sprays.
X