Refine Your Search

Topic

Search Results

Technical Paper

Simulation Investigation of Turbulent Jet Ignition (TJI) Combustion in a Dedicated Hybrid Engine under Stoichiometric Condition

2024-04-09
2024-01-2111
Turbulent jet ignition (TJI) combustion using pre-chamber ignition can accelerate the combustion speed in the cylinder and has garnered growing interest in recent years. However, it is complicated for the optimization of the pre-chamber structure and combustion system. This study investigated the effects of the pre-chamber structure and the intake ports on the combustion characteristics of a gasoline engine through CFD simulation. Spark ignition (SI) combustion simulation was also conducted for comparison. The results showed that the design of the pre-chamber that causes the jet flame colliding with walls severely worsen the combustion, increasing the knocking intendency, and decrease the thermal efficiency. Compared with SI combustion mode, the TJI combustion mode has the higher heat transfer loss and lower unburned loss. The well-optimized pre-chamber can accelerate the flame propagation with knock suppression.
Technical Paper

Light-duty Plug-in Electric Vehicles in China: Evolution, Competition, and Outlook

2023-04-11
2023-01-0891
China's plug-in electric vehicle (PEV) market with stocks at 7.8 million is the world's largest in 2021, and it accounts for half of the global PEV growth in 2021. The PEV market in China has dramatically evolved since the pandemic in 2020: over 20% of all new PEV sales are from China by mid-2022. Recent features of PEV market dynamics, consumer acceptance, policies, and infrastructure have important implications for both the global energy market and manufacturing stakeholders. From the perspective of demand pull-supply push, this study analyzes China's PEV industry with a market dynamics framework by reviewing sales, product and brand, infrastructure, and government policies from the last few years and outlooking the development of the new government’s 14th Five-Year Plan (2021-2025).
Technical Paper

Study on Cavitation Effect of Hydraulic Retarder

2022-09-19
2022-01-1169
Hydraulic retarder is important auxiliary brake device which widely used in commercial vehicles for its economy, safety and driving comfort, however cavitation will occur and reduce the braking performance when hydraulic retarder operates at high speed. In this paper, a model of hydraulic retarder considering cavitation effect was established, and the reliability of the model was verified by comparing with the external characteristics of the product which was obtained from Voith’s official discloses data. Then the cavitation of hydraulic retarder under high-speed working condition was studied by the establishing simulation model. The simulation model can describe and analyze the internal flow field in the hydraulic retarder, and can be used as an important tool for the development and optimization of hydraulic retarder in the future. When hydraulic retarder’s rotational speed is about 1500rpm, the cavitation will be observed in the working chamber.
Technical Paper

High-Power Synchronous Rectification Drive Power System Based on PID Control

2022-03-29
2022-01-0720
The driving power system can be combined with lasers, lights, etc., and applied to automobiles to achieve various functions. Under the general trend of the development of intelligent vehicles, people have higher and higher requirements for the accuracy and power of various equipment. However, as power increases, how to ensure the stability of factors such as current is a challenging problem. Therefore, it is extremely important to study and design a high-power drive system in this paper, so as to ensure a stable output of the current. The system is composed of power supply, load, secondary power supply and control chip. The choice of power supply and load is conventional model. The secondary power supply adopts step-down circuit, with synchronous rectifier chip, which can effectively reduce energy consumption, and with temperature protection device, which can ensure the safe and reliable operation of equipment.
Technical Paper

Detection of Driver’s Cognitive States Based on LightGBM with Multi-Source Fused Data

2022-03-29
2022-01-0066
According to the statistics of National Highway Traffic Safety Administration, driver’s cognitive distraction, which is usually caused by drivers using mobile phones, has become one of the main causes of traffic accidents. To solve this problem and guarantee the safety of man-vehicle-road system, the most critical work is to improve the accuracy of driver’s cognitive state detection. In this paper, a novel driver’s cognitive state detecting method based on LightGBM (Light Gradient Boosting Machine) is proposed. Firstly, cognitive distraction experiments of making calls are carried out on a driving simulator to collect vehicle states, eye tracking and EEG (electron encephalogram) data simultaneously and feature extraction is conducted. Then a classifier considering road and individual characteristics used for detecting cognitive states is trained based on LightGBM algorithm, with 3 predefined cognitive states including concentration, ordinary distraction and extreme distraction.
Technical Paper

Comparison of Spray Collapses from Multi-Hole and Single-Hole Injectors Using High-Speed Photography

2020-04-14
2020-01-0321
In this paper, the differences between multi-hole and single-hole spray contour under the same conditions were compared by using high-speed photography. The difference between the contour area of multi-hole and that of single-hole spray was used as a parameter to describe the degree of spray collapse. Three dimensionless parameters (i.e. degree of superheat, degree of undercooling, and nozzle pressure ratio) were applied to characterize inside-nozzle thermodynamic, outside-nozzle thermodynamic and kinetic factors, respectively. In addition, the relationship between the three dimensionless parameters and the spray collapse was analyzed. A semi-empirical equation was proposed for evaluation of the degree of collapse based on dimensionless parameters of flash and non-flash boiling sprays respectively.
Technical Paper

The Review of Vehicle Purchase Restriction in China

2020-04-14
2020-01-0972
In the past two decades, rapidly expanding economy in China led to burst in travel demand and pursuit of quality of life. It further promoted the rapid growth of China's passenger car market. China had already become the largest vehicle sales country, exceeding the U.S. in 2010. By the end of 2018, there had been over 240 million cars in China, with over 200 million passenger cars. The surge of car ownership has also brought a series of problems, like traffic congestion, long commuting time, insufficient parking space, etc. Therefore, some local governments in China introduced vehicle purchase restriction policies to control the growth and gross of vehicle stock. Different cities issued different rules. Lottery and auction mechanisms both exist. There are also differences in classification and licensing of electric vehicles. However, with the recent slowdown of economic development, China's car sales began to decline in 2018, and the trend of 2019 is also not optimistic.
Technical Paper

Design and Control of Thermal Management System for the Fuel Cell Vehicle in Low-Temperature Environment

2020-04-14
2020-01-0851
In low-temperature environment, heat supply requires considerable energy, which significantly increases energy consumption and shortens the mileage of electric vehicle. In the fuel cell vehicles, waste heat generated by the fuel cell system can supply heat for vehicle. In this paper, a thermal management system is designed for a the fuel cell interurban bus. Thermal management strategy aiming at temperature regulation for the fuel cell stack and the passenger compartment and minimal energy consumption is proposed. System model is developed and simulated based on AMESim and Matlab/Simulink co-simulation. Simulation results show that the fuel cell system can provide about 78 % energy of maximum heat requirement in -20 °C ambient temperature environment.
Technical Paper

Safety Development Trend of the Intelligent and Connected Vehicle

2020-04-14
2020-01-0085
Automotive safety is always the focus of consumers, the selling point of products, the focus of technology. In order to achieve automatic driving, interconnection with the outside world, human-automatic system interaction, the security connotation of intelligent and connected vehicles (ICV) changes: information security is the basis of its security. Functional safety ensures that the system is operating properly. Behavioral safety guarantees a secure interaction between people and vehicles. Passive security should not be weakened, but should be strengthened based on new constraints. In terms of information safety, the threshold for attacking cloud, pipe, and vehicle information should be raised to ensure that ICV system does not fail due to malicious attacks. The cloud is divided into three cloud platforms according to functions: ICVs private cloud, TSP cloud, public cloud.
Technical Paper

Multi-Objective Optimization Design of Hybrid Material Bumper for Pedestrian Protection and Crashworthiness Design

2020-04-14
2020-01-0201
In vehicle accident, the bumper beam generally requires high stiffness for sufficient survival space for occupants while it may cause serious pedestrian lower extremity injuries. The aim of this study is to promote an aluminum-steel hybrid material double-hat bumper to meet the comprehensive requirements. The hybrid bumper is designed to improve the frontal crash and pedestrian protection performances in collision accidents. Finite element (FE) models of the hybrid bumper was built, validated, and integrated into an automotive model. The Fixed Deformable Barrier (FDB) and Transport Research Laboratory (TRL) legform model were used to obtain the vehicle crashworthiness and pedestrian lower leg injury indicators. Numerical results showed that the hybrid bumper had a great potential for crashworthiness performance and pedestrian protection characteristics. Based on this, a multi-objective optimization design (MOD) was performed to search the optimal geometric parameters.
Journal Article

An Efficient Path Planning Methodology Based on the Starting Region Selection

2020-04-14
2020-01-0118
Automated parking is an efficient way to solve parking difficulties and path planning is of great concern for parking maneuvers [1]. Meanwhile, the starting region of path planning greatly affects the parking process and efficiency. The present research of the starting region are mostly determined based on a single algorithm, which limits the flexibility and efficiency of planning feasible paths. This paper, taking parallel parking and vertical parking for example, proposes a method to calculate the starting region and select the most suitable path planning algorithm for parking, which can improve the parking efficiency and reduce the complexity. The collision situations of each path planning algorithm are analyzed under collision-free conditions based on parallel and vertical parking. The starting region for each algorithm can then be calculated under collision-free conditions.
Technical Paper

Active Damping Control of Torsional Vibration in a Diesel Hybrid Powertrain

2019-12-19
2019-01-2342
This paper has designed a real time control algorithm to use ISG motor actively compensate the torque ripple produced by the engine, to reduce torsional vibration. This paper consists of 3 parts. In the first section, this paper has introduced the research object and its modification for experiments. Then the development of control strategy is presented. The engine dynamic model is built, and real-time control with a feedforward unit and a feedback unit is derived. Encoder and cylinder pressure is used for engine torque estimator. Then the ISG motor output the counter-waveform to make the overall output smooth. In order to verify the effectiveness of the control strategy, the final section has established a test bench, where two experiments are carried out. One of the experimental conditions is to set the engine at a constant operating point, while the other is to crank the engine from 0 rpm to idle speed with ISG motor.
Technical Paper

Effect of Thermodynamic Conditions on Spark Ignition to Compression Ignition in Ultra-Lean Mixture Using Rapid Compression Machine

2019-04-02
2019-01-0963
Compression ratio and specific heat ratio are two dominant factors influencing engine thermal efficiency. Therefore, ultra-lean burn may be one method to deal with increasingly stringent fuel consumption and emission regulations in the approaching future. To achieve high efficiency and clean combustion, innovative combustion modes have been applied on research engines including homogeneous charge compression ignition (HCCI), spark-assisted compression ignition (SACI), and gasoline direct-injection compression ignition (GDCI), etc. Compared to HCCI, SACI can extend the load range and more easily control combustion phase while it is constrained by the limit of flame propagation. For SACI with ultra-lean burn in engines, equivalence ratio (φ), rich-fuel mixture around spark plug, and supercharging are three essentials for combustion stability.
Journal Article

Effects of Perforation Shapes on Water Transport in PEMFC Gas Diffusion Layers

2019-04-02
2019-01-0380
Water management, particularly in the gas diffusion layers (GDL), plays an important role in the performance and reliability of the proton exchange membrane fuel cells (PEMFCs). In this study, a two-phase multiple-relaxation-time (MRT) lattice Boltzmann method (LBM) is employed to simulate water transport in a reconstructed GDL and the effect of perforation shapes is investigated. The revised pseudopotential multiphase model is adopted to realize high-density ratio, good thermodynamic consistency, adjustable surface tension and high contact angle. The transport characteristics are analyzed in both vertical and horizontal transport directions. The LBM simulation provides detailed results in mesoscale and indicates that the surface tension dominates the process of water transport in the perforated GDL, which exhibits unexpectedly similarities in the vertical and horizontal transport.
Technical Paper

Fuel Economy Regulations and Technology Roadmaps of China and the US: Comparison and Outlook

2018-09-10
2018-01-1826
In order to address the increasing energy and environmental concerns, China and the US both launched the fuel economy regulations and aim to push the development of technology. In this study, the stringency of CAFC and CAFE regulations and the technology development of two countries are compared. Besides, the optimal technology pathways of America and automakers for the compliance of CAFE regulations are calculated based on the modified VOLPE model, and the results are used as reference for China. The results indicate that the annual regulation improvement rates of China is higher than America and the AIR of China 2015-2020 regulation reaches 6.2% and is the most stringent phase in 10 years from 2015 to 2025. From the perspective of technology, there are still big gaps between China and the US in the applications of advanced fuel saving technologies.
Journal Article

Energy Harvesting in Tire: State-of-the-Art and Challenges

2018-04-03
2018-01-1119
Although energy harvesting systems are extensively used in different fields, studies on the application of energy harvesters embedded in tires for vehicle control are rare and mostly focus on solving power supply problems of tire pressure sensors. Sensors are traditionally powered by an embedded battery, which must be replaced periodically because of its limited energy storage. Heightened interest in vehicle safety is expected to drive increased design and manufacture of in-tire sensors, which in turn, translates to rising demand for power generation in tires. These challenges emphasize the need to investigate the substitution of batteries and in-tire energy harvesting systems. Current in-tire energy harvesting methods involve piezoelectric, electromagnetic, and electrostatic power generation, whose energy sources include tire vibrations, deformations, and rotations. Piezoelectric harvesters are generally compact but operate for short durations.
Technical Paper

Characterizing Propane Flash Boiling Spray from Multi-Hole GDI Injector

2018-04-03
2018-01-0278
In this research, propane flash boiling sprays discharged from a five-hole gasoline direct injector were studied in a constant volume vessel. The fuel temperature (Tfuel) ranged from 30 °C to 90 °C, and the ambient pressure (Pamb) varied from 0.05 bar to 11.0 bar. Different flash boiling spray behavior compared to that under sub-atmospheric conditions was found at high Pamb. Specifically, at the sub-atmospheric pressures, the individual flashing jets merged into one single jet due to the strong spray collapse. In contrast, at Pamb above 3.0 bar and Tfuel above 50 °C, the spray collapse was mitigated and the flashing jets were separated from each other. Further analyses revealed that the mitigation of spray collapse at high Pamb was ascribed to the suppression of jet expansion. In addition, it was found that the spray structure was much different at similar Rp, indicating that Rp lacked the generality in describing the structure of flash boiling sprays.
Technical Paper

Using Shoulder Bolster and Knee Bolster to Achieve Protection Effect Comparable to Seatbelt and Airbag

2018-04-03
2018-01-1170
Seatbelt and airbags provide effective occupant restraint, but are also potential to induce intrusive deformation and submarining injuries in motor vehicle crashes. To address these issues, this study puts forward a new restraint concept that applies restraint loads on shoulders and knees/femurs, i.e., the sturdiest regions of human body, via a combined use of shoulder bolster and knee bolster based on biomechanical computational analysis. The load characteristics of the two bolsters were optimized to obtain protection effectiveness superior to conventional use of seatbelt and airbag. Occupant kinematics and kinetics were taken into account, including the excursions of head, shoulders and knees, the accelerations of head and chest, and the compressions of thorax on several locations on the ribcage. The injury risk of rib fractures was monitored based on the strain levels of ribcage.
Technical Paper

Experimental Study and Numerical Interpretation on the Temperature Field of DPF during Active Regeneration with Hydrocarbon Injection

2018-04-03
2018-01-1257
Diesel particulate filter (DPF) is indispensable for diesel engines to meet the increasingly stringent emission regulations. Both the peak temperature and the maximum temperature gradient of the DPF during active regeneration should be well controlled in order to enhance the reliability and durability of the filter. In this paper, the temperature field of the DPF during active regeneration with hydrocarbon (HC) injection was investigated with engine bench tests and numerical simulation. For the experimental study, 24 thermocouples were inserted into the DPF channels to measure the inner temperature of the filter to capture its temperature field, and the circumferential, axial and radial distribution of the filter temperature was analyzed to understand the DPF temperature field behavior during active regeneration.
Journal Article

Comparative Study on Gasoline HCCI and DICI Combustion in High Load Range with High Compression Ratio for Passenger Cars Application

2017-10-08
2017-01-2257
This study compared the combustion and emission characteristics of Homogeneous Charge Compression Ignition (HCCI) and Direct Injection Compression Ignition (DICI) modes in a boosted and high compression ratio (17) engine fueled with gasoline and gasoline/diesel blend (80% gasoline by volume, denoted as G80). The injection strategy was adjusted to achieve the highest thermal efficiency at different intake pressures. The results showed that Low Temperature Heat Release (LTHR) was not observed in gasoline HCCI. However, 20% additional diesel could lower down the octane number and improve the autoignition reactivity of G80, which contributed to a weak LTHR, accounting for approximately 5% of total released heat. The combustion efficiency in gasoline DICI was higher than those in gasoline HCCI and G80 HCCI, while the exhaust loss and heat transfer loss in DICI mode were higher than those in HCCI mode.
X