Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Characterizing Propane Flash Boiling Spray from Multi-Hole GDI Injector

2018-04-03
2018-01-0278
In this research, propane flash boiling sprays discharged from a five-hole gasoline direct injector were studied in a constant volume vessel. The fuel temperature (Tfuel) ranged from 30 °C to 90 °C, and the ambient pressure (Pamb) varied from 0.05 bar to 11.0 bar. Different flash boiling spray behavior compared to that under sub-atmospheric conditions was found at high Pamb. Specifically, at the sub-atmospheric pressures, the individual flashing jets merged into one single jet due to the strong spray collapse. In contrast, at Pamb above 3.0 bar and Tfuel above 50 °C, the spray collapse was mitigated and the flashing jets were separated from each other. Further analyses revealed that the mitigation of spray collapse at high Pamb was ascribed to the suppression of jet expansion. In addition, it was found that the spray structure was much different at similar Rp, indicating that Rp lacked the generality in describing the structure of flash boiling sprays.
Technical Paper

Study of Near Nozzle Spray Characteristics of Ethanol under Different Saturation Ratios

2016-10-17
2016-01-2189
Atomization of fuel sprays is a key factor in controlling the combustion quality in the direct-injection engines. In this present work, the effect of saturation ratio (Rs) on the near nozzle spray patterns of ethanol was investigated using an ultra-high speed imaging technique. The Rs range covered both flash-boiling and non-flash boiling regions. Ethanol was injected from a single-hole injector into an optically accessible constant volume chamber at a fixed injection pressure of 40 MPa with different fuel temperatures and back pressures. High-speed imaging was performed using an ultrahigh speed camera (1 million fps) coupled with a long-distance microscope. Under non-flash boiling conditions, the effect of Rs on fuel development was small but observable. Clear fuel collision can be observed at Rs=1.5 and 1.0. Under the flash boiling conditions, near-nozzle spray patterns were significant different from the non-flash boiling ones.
Technical Paper

Effects of Sinusoidal Whole Body Vibration Frequency on Drivers' Muscle Responses

2015-04-14
2015-01-1396
Low back pain has a higher prevalence among drivers who have long term history of vehicle operations. Vehicle vibration has been considered to contribute to the onset of low back pain. However, the fundamental mechanism that relates vibration to low back pain is still not clear. Little is known about the relationship between vibration exposure, the biomechanical response, and the physiological responses of the seated human. The aim of this study was to determine the vibration frequency that causes the increase of muscle activity that can lead to muscle fatigue and low back pain. This study investigated the effects of various vibration frequencies on the lumbar and thoracic paraspinal muscle responses among 11 seated volunteers exposed to sinusoidal whole body vibration varying from 4Hz to 30Hz at 0.4 g of acceleration. The accelerations of the seat and the pelvis were recorded during various frequency of vibrations. Muscle activity was measured using electromyography (EMG).
X