Refine Your Search

Topic

Search Results

Journal Article

Refinements of the Dynamic Inversion Part of Hierarchical 4WIS/4WID Trajectory Tracking Controllers

2023-04-11
2023-01-0907
To tackle the over-actuated and highly nonlinear characteristics that four-wheel-independent-steering and four-wheel-independent -driving (4WIS/4WID) vehicles exhibit when tracking aggressive trajectory, a hierarchical controller with layers of computation-intensive modules is commonly adopted. The high-level linear motion controller commands the desired state derivatives of the vehicle to meet the overall trajectory tracking objectives. Then the system dynamic is inversed by the mid-level control allocation layer and the low-level wheel control layer to map the target state derivatives to steering angle and motor torque commands. However, this type of controller is difficult to implement on the embedded hardware onboard since the nonlinear dynamic inversion is typically solved by nonlinear programming.
Technical Paper

Noise and Vibration Reduction Method for Electric Drivetrain System under Multiple Excitation Resources

2022-10-28
2022-01-7059
Due to the lack of masking effect from the engine, noise and vibration from the drivetrain system have become a critical issue in electric vehicles. To address this problem, this study aims at proposing a comprehensive optimization method with respect to multiple internal excitation sources to reduce the noise and vibration of the electric drivetrain system (EDS). A rigid-flexible coupling dynamic (RFCD) model is first proposed by incorporating the elements of electric motors, gear pairs, bearings, shafts, and housing. Based on the proposed model, optimizations concerning multiple internal excitations are carried out by designing the notch width of the stator core and optimizing the modification parameters of the tooth surface along the flank and lead direction. Meanwhile, multiple operating conditions are considered in the optimization of the tooth surface to cover a complete working condition of the EDS.
Technical Paper

Visual System Analysis of High Speed On-Off Valve Based on Multi-Physics Simulation

2022-03-29
2022-01-0391
High speed on-off valves (HSVs) are widely used in advanced hydraulic braking actuators, including regenerative braking systems and active safety systems, which take crucial part in improving the energy efficiency and safety performance of vehicles. As a component involving multiple physical fields, the HSV is affected by the interaction of the fields-fluid, electromagnetic, and mechanical. Since the opening of the HSV is small and the flow speed is high, cavitation and vortex are inevitably brought out so that increase the valve’s noise and instability. However, it is costly and complex to observe the flow status by visual fluid experiments. Hence, in this article a visual multi-physics system simulation model of the HSV is explored, in which the flow field model of the HSV built by computational fluid dynamic (CFD) is co-simulated with the model of hydraulic actuator established by AMESim.
Technical Paper

Comparison of Spray Collapses from Multi-Hole and Single-Hole Injectors Using High-Speed Photography

2020-04-14
2020-01-0321
In this paper, the differences between multi-hole and single-hole spray contour under the same conditions were compared by using high-speed photography. The difference between the contour area of multi-hole and that of single-hole spray was used as a parameter to describe the degree of spray collapse. Three dimensionless parameters (i.e. degree of superheat, degree of undercooling, and nozzle pressure ratio) were applied to characterize inside-nozzle thermodynamic, outside-nozzle thermodynamic and kinetic factors, respectively. In addition, the relationship between the three dimensionless parameters and the spray collapse was analyzed. A semi-empirical equation was proposed for evaluation of the degree of collapse based on dimensionless parameters of flash and non-flash boiling sprays respectively.
Technical Paper

Dynamic Load Identification for Battery Pack Bolt Based on Machine Learning

2020-04-14
2020-01-0865
Batteries are exposed to dynamic load during vehicle driving. It is significant to clarify the load input of the battery system during vehicle driving for battery pack structural design and optimization. Currently, bolt connection is mostly applied for battery pack constraint to vehicle, as well as for module assembly inside the pack. However, accurate bolt load is always difficult to obtain, while directly force measurement is expensive and time consuming in engineering. In this paper, a precise data driven model based on Elman neural network is established to identify the dynamic bolt loads of the battery pack, using tested acceleration data near bolts. The dynamic bolt force data is measured at the same time with the acceleration data during vehicle running in different driving conditions, utilizing customized bolt force sensors.
Technical Paper

Active Damping Control of Torsional Vibration in a Diesel Hybrid Powertrain

2019-12-19
2019-01-2342
This paper has designed a real time control algorithm to use ISG motor actively compensate the torque ripple produced by the engine, to reduce torsional vibration. This paper consists of 3 parts. In the first section, this paper has introduced the research object and its modification for experiments. Then the development of control strategy is presented. The engine dynamic model is built, and real-time control with a feedforward unit and a feedback unit is derived. Encoder and cylinder pressure is used for engine torque estimator. Then the ISG motor output the counter-waveform to make the overall output smooth. In order to verify the effectiveness of the control strategy, the final section has established a test bench, where two experiments are carried out. One of the experimental conditions is to set the engine at a constant operating point, while the other is to crank the engine from 0 rpm to idle speed with ISG motor.
Technical Paper

Attitude Control of the Vehicle with Six In-Wheel Drive and Adaptive Hydro Pneumatic Suspensions

2019-04-02
2019-01-0456
The ability of actively adjusting attitude provides a great advantage for those vehicles used in special environments such as off-road environment with extreme terrains and obstacles. It can improve vehicles’ stability and performance. This paper proposes an attitude control system for realizing the active attitude adjustment and vehicle motion control in the same time. The study is based on a vehicle with six wheel independent drive and six independent suspensions (6WIDIS), which is a kind of unmanned vehicle with six in-wheel drives and six independent hydro pneumatic suspensions. With the hydro- pneumatic suspensions, the vehicle’s attitude can be actively adjusted. This paper develops a centralized- distributed control strategy with attitude information obtained by multi-sensor fusion, which can coordinate the complex relationship among the six wheels and suspensions. The attitude control system consists of three parts.
Technical Paper

A Novel Three Steps Composited Parameter Matching Method of an Electromagnetic Regenerative Suspension System

2019-04-02
2019-01-0173
The electromagnetic regenerative suspension has attracted much attention recently due to its potential to improve ride comfort and handling stability, at the same time recover kinetic energy which is typically dissipated in traditional shock absorbers. The key components of a ball-screw regenerative suspension system are a motor, a ball screw and a nut. For this kind of regenerative suspension, its damping character is determined by the motor's torque-speed capacity, which is different from the damping character of the traditional shock absorber. Therefore, it is necessary to establish a systematic approach for the parameter matching of ball-screw regenerative suspension, so that the damping character provided by it can ensure ride comfort and handling stability. In this paper, a 2-DOF quarter vehicle simulation model with regenerative suspension is constructed. The effects of the inertia force on ride comfort and handling stability are analyzed.
Technical Paper

Study on Calculation Method of Gear Temperature Field Based on Spray Lubrication

2017-10-08
2017-01-2444
High-speed rotating gears are generally lubricated by spray lubrication. Lubricating oil is driven by high-speed rotating gear, and some lubricating oil will be excited into oil mist, so that the gears are in the gas-liquid mixed environment. In this paper, the computational fluid dynamics model of the spray lubrication cooling process is established based on the gear heat transfer behavior under the spray lubrication condition. The influence of different spray parameters on the liquid-solid two-phase convective heat transfer coefficient is obtained. On this basis, the accurate boundary conditions of gear temperature field calculation are analyzed by studying the heat transfer behavior of high speed gear spray lubrication. The calculation model of gear temperature based on spray lubrication is established, and the temperature field distribution of gear is obtained.
Technical Paper

The engaging process model of sleeve and teeth ring with a precise, continuous and nonlinear damping impact model in mechanical transmissions

2017-10-08
2017-01-2443
During the engaging process of sleeve and teeth ring in mechanical transmissions, their rotational speed and position differences cause multiple engaging ways and trajectories, and casual impacts between them will delay the engaging process and cause a long power off time for a gear shift. In order to reveal the engaging mechanism of the sleeve and the teeth ring, it is essential to build a high-fidelity model to cover all of their engaging ways and capture their speed changes for an impact. In this work, our contribution is that their impact process is modeled as a precise, continuous and nonlinear damping model, and then a hybrid automaton model is built to connect the system dynamics in different mechanical coupling relationships.
Technical Paper

Architecture of iBus: A Self-Driving Bus for Public Roads

2017-03-28
2017-01-0067
Safety of buses is crucial because of the large proportion of the public transportation sector they constitute. To improve bus safety levels, especially to avoid driver error, which is a key factor in traffic accidents, we designed and implemented an intelligent bus called iBus. A robust system architecture is crucial to iBus. Thus, in this paper, a novel self-driving system architecture with improved robustness, such as to failure of hardware (including sensors and controllers), is proposed. Unlike other self-driving vehicles that operate either in manual driving mode or in self-driving mode, iBus offers a dual-control mode. More specifically, an online hot standby mechanism is incorporated to enhance the reliability of the control system, and a software monitor is implemented to ensure that all software modules function appropriately. The results of real-world road tests conducted to validate the feasibility of the overall system confirm that iBus is reliable and robust.
Technical Paper

Study of Near Nozzle Spray Characteristics of Ethanol under Different Saturation Ratios

2016-10-17
2016-01-2189
Atomization of fuel sprays is a key factor in controlling the combustion quality in the direct-injection engines. In this present work, the effect of saturation ratio (Rs) on the near nozzle spray patterns of ethanol was investigated using an ultra-high speed imaging technique. The Rs range covered both flash-boiling and non-flash boiling regions. Ethanol was injected from a single-hole injector into an optically accessible constant volume chamber at a fixed injection pressure of 40 MPa with different fuel temperatures and back pressures. High-speed imaging was performed using an ultrahigh speed camera (1 million fps) coupled with a long-distance microscope. Under non-flash boiling conditions, the effect of Rs on fuel development was small but observable. Clear fuel collision can be observed at Rs=1.5 and 1.0. Under the flash boiling conditions, near-nozzle spray patterns were significant different from the non-flash boiling ones.
Journal Article

Research on Temperature and Strain Rate Dependent Viscoelastic Response of Polyvinyl Butaral Film

2016-04-05
2016-01-0519
The mechanical behavior of polyvinyl butyral (PVB) film plays an important role in windshield crashworthiness and pedestrian protection and should be depth study. In this article, the uniaxial tension tests of PVB film at various strain rates (0.001 s-1, 0.01 s-1, 0.1 s-1, 1 s-1) and temperatures (-10°C, 0°C, 10°C, 23°C, 40°C, 55°C, 70°C) are conducted to investigate its mechanical behavior. Then, temperature and strain rate dependent viscoelastic characteristics of PVB are systematically studied. The results show that PVB is a kind of temperature and strain rate sensitive thermal viscoelastic material. Temperature increase and strain rate decrease have the same influence on mechanical properties of PVB. Besides, the mechanical characteristics of PVB change non-linearly with temperature and strain rate. Finally, two thermal viscoelastic constitutive model (ZWT model and DSGZ model) are suggested to describe the tension behavior of PVB film at various strain rates and temperatures.
Journal Article

Linear Control Performance Improvement of High Speed On-Off Valve Controlled by PWM

2015-09-27
2015-01-2672
High speed on-off valve is applied widely in vehicle control systems. When high speed on-off valve is controlled by Pulse Width Modulation (PWM) of high frequency, the valve core can float at a certain position which is adjusted by changing the duty ratio within a certain effective range. Then the high speed on-off valve can control the flow and pressure linearly like proportional valve. Thus it is essential to extend the effective range of duty ratio to improve the linear control performance of high speed on-off valve. In this paper, the high speed on-off valve of the automotive Electronic Stability Program (ESP) is the focus, and its flow force is analyzed in detail to get the effects of hydraulic parameters on the valve performance. The mathematic model of the high speed on-off valve is derived. Then the valve structural parameters are optimized according to the Genetic Algorithm(GA), offering the theoretical references for extending the effective duty ratio of PWM.
Technical Paper

A Dynamic Model for Tire/Road Friction Estimation under Combined Longitudinal/Lateral Slip Situation

2014-04-01
2014-01-0123
A new dynamic tire model for estimating the longitudinal/lateral road-tire friction force was derived in this paper. The model was based on the previous Dugoff tire model, in consideration of its drawback that it does not reflect the actual change trend that the tire friction force decreases with the increment of wheel slip ratio when it enters into the nonlinear region. The Dugoff model was modified by fitting a series of tire force data and compared with the commonly used Magic Formula model. This new dynamic friction model is able to capture accurately the transient behavior of the friction force observed during pure longitudinal wheel slip, lateral sideslip and combined slip situation. Simulation has been done under different situations, while the results validate the accuracy of the new tire friction model in predicting tire/road friction force during transient vehicle motion.
Journal Article

Influencing Factors of Contact Force Distribution in Pedestrian Upper Legform Impact with Vehicle Front-End

2012-04-16
2012-01-0272
Pedestrian upper leg impact protection is a challenging requirement in the Euro NCAP assessment. In upper legform to bonnet leading edge tests, the legform impact force, the legform intrusion and the injury parameters (impact force and bending moment measured on the upper legform) are highly related to design of vehicle front-end styling and structure, as well as clearance underneath bonnet leading edge. In the course of impact, the contact area variation has significant influence on the stress distribution and consequently the force and the bending moment on the upper legform. Using finite element simulations of upper legform impact with a typical sedan, the deformation of the legform and the vehicle structure, and the variation of the contact force distribution are characterized and analyzed.
Journal Article

Numerical Simulation on the Ventilation Cooling Performance of the Engine Nacelle under Hover and Forward Flight Conditions

2011-04-12
2011-01-0513
The main objective of this work is to investigate, by means of numerical simulations, the performance of the engine nacelle ventilation cooling system of a helicopter under hover and forward flight conditions, and to propose a simplified method of evaluating the performance based on rotor downwash flow by taking the synthetical effect of engine nacelle, exhaust ejector and external flow of a helicopter into account. For the engine nacelle of a helicopter, an integrated model of the nacelle and exhaust ejector was set up including the domain of external flow. The unstructured grid and finite volume method were applied for domains and control equations discreteness, and the standard k-ε model was applied for solving turbulent control equations. Using the business CFD software, the flow field and the temperature field in the nacelle were calculated for single inlet scheme and double inlets scheme, total up to 9 schemes. The performance of the exhaust ejector was computed.
Journal Article

CFD Analysis of VVT/VVA on the Gas Exchange and Fuel-Air Mixing in a Diesel Engine

2008-06-23
2008-01-1635
A three-dimensional simulation was carried out for investigating effects of negative valve overlap (NVO) on gas exchange and fuel-air mixing processes in a diesel homogeneous charge compression ignition (HCCI) engine with early fuel injection. It was found that the case with longer NVO produced a stronger swirl motion and a more significant vortex below the intake valve due to the high annular jet flow through the valve curtain area during the intake stroke. However, there was not much difference in the values of swirl ratio, tumble ratio and turbulence intensity between different NVOs at the end of compression stroke. It was also seen that enlarged NVO not just increased in-cylinder temperature but also improved the temperature homogeneity. With increased NVO, there is a bigger spray shape and more droplets exist in gaps of sprays. This demonstrates that stronger turbulence intensity and higher temperature homogeneity with higher NVO improve fuel vaporization and air-fuel mixing.
Technical Paper

Dynamic Characteristic Simulation of AT Hydraulic System

2008-06-23
2008-01-1683
Hydraulic system is very important for the performance of AT. The dynamic characteristics of automatic transmission hydraulic system are studied in this paper. Because the valves in the hydraulic system are not standard parts, ITI-SimulationX, the multi-domain physics simulation software from ITI GmbH, is used to build the dynamic model of the hydraulic system based on the basic elements in the library of SimulationX. And then the dynamic characteristics of the system are simulated. The simulation results and the test results from the test bench are compared to confirm the simulation model. The results show that the simulation model can couple with the real system very well and the simulation model can be confirmed. Based on the confirmed simulation model, the effects of different parameters of the hydraulic system on the characteristics of the system are analyzed.
Technical Paper

A Control Oriented Simplified Transient Torque Model of Turbocharged Diesel Engines

2008-06-23
2008-01-1708
Due to the high cost of torque sensors, a calculation model of transient torque is required for real-time coordinating control purpose, especially in hybrid electric powertrains. This paper presents a feedforward calculation method based on mean value model of turbocharged non-EGR diesel engines. A fitting variable called fuel coefficient is defined in an affine relation between brake torque and fuel mass. The fitting of fuel coefficient is simplified to depend only on three variables (engine speed, boost pressure, injected fuel mass). And a two-layer feedforward neural network is utilized to fit the experimental data. The model is validated by load response test and ETC (European Transient Cycle) transient test. The RMSE (root mean square error) of the brake torque is less than 3%.
X