Refine Your Search

Search Results

Viewing 1 to 5 of 5
Technical Paper

Experimental Study of Lignin Fuels for CI Engines

2024-06-12
2024-37-0022
This study explores the feasibility of using a sustainable lignin-based fuel, consisting of 44 % lignin, 50 % ethanol, and 6 % water, in conventional compression ignition (CI) marine engines. Through experimental evaluations on a modified small-bore CI engine, we identified the primary challenges associated with lignin-based fuel, including engine startup and shutdown issues due to solvent evaporation and lignin solidification inside the fuel system, and deposit formation on cylinder walls leading to piston ring seizure. To address these issues, we developed a fuel switching system transitioning from lignin-based fuel to cleaning fuel with 85 vol% of acetone, 10 vol% of water and 5 vol% of ignition improving additive, effectively preventing system clogs.
Journal Article

A Progress Review on Soot Experiments and Modeling in the Engine Combustion Network (ECN)

2016-04-05
2016-01-0734
The 4th Workshop of the Engine Combustion Network (ECN) was held September 5-6, 2015 in Kyoto, Japan. This manuscript presents a summary of the progress in experiments and modeling among ECN contributors leading to a better understanding of soot formation under the ECN “Spray A” configuration and some parametric variants. Relevant published and unpublished work from prior ECN workshops is reviewed. Experiments measuring soot particle size and morphology, soot volume fraction (fv), and transient soot mass have been conducted at various international institutions providing target data for improvements to computational models. Multiple modeling contributions using both the Reynolds Averaged Navier-Stokes (RANS) Equations approach and the Large-Eddy Simulation (LES) approach have been submitted. Among these, various chemical mechanisms, soot models, and turbulence-chemistry interaction (TCI) methodologies have been considered.
Technical Paper

Penetration and combustion characterization of cavitating and non-cavitating fuel injectors under diesel engine conditions

2016-04-05
2016-01-0860
This work investigates the effects of cavitation on spray characteristics by comparing measurements of liquid and vapor penetration as well as ignition delay and lift-off length. A smoothed-inlet, converging nozzle (nominal KS1.5) was compared to a sharp-edged nozzle (nominal K0) in a constant-volume combustion vessel under thermodynamic conditions consistent with modern compression ignition engines. Within the near-nozzle region, the K0 nozzle displayed larger radial dispersion of the liquid as compared to the KS1.5 nozzle, and shorter axial liquid penetration. Moving downstream, the KS1.5 jet growth rate increased, eventually reaching a growth rate similar to the K0 nozzle while maintaining a smaller radial width. The increasing spreading angle in the far field creates a virtual origin, or mixing offset, several millimeters downstream for the KS1.5 nozzle.
Technical Paper

Steady State Investigations of DPF Soot Burn Rates and DPF Modeling

2011-09-11
2011-24-0181
This work presents the experimental investigation of Diesel Particulate Filter (DPF) regeneration and a calibration procedure of a 1D DPF simulation model based on the commercial software AVL BOOST v. 5.1. Model constants and parameters are fitted on the basis of a number of steady state DPF experiments where the DPF is exposed to real engine exhaust gas in a test bed. The DPF is a silicon carbide filter of the wall flow type without a catalytic coating. A key task concerning the DPF model calibration is to perform accurate DPF experiments because measured gas concentrations, temperatures and soot mass concentrations are used as model boundary conditions. An in-house-developed raw exhaust gas sampling technique is used to measure the soot concentration upstream the DPF which is also needed to find the DPF soot burn rate.
Technical Paper

Novel base metal-palladium catalytic diesel filter coating with NO2 reducing properties

2007-07-23
2007-01-1921
A novel base metal-palladium catalytic coating was applied on commercial silicon carbide wall flow diesel filters and tested in an engine test bench. This catalytic coating limits the NO2 formation and even removes NO2 within a wide temperature range. Soot combustion, HC conversion and CO conversion properties are comparable to current platinum-based coatings, but at a lower cost. This paper compares the results from engine bench tests of present commercial solutions as regards NO2-, HC-, CO-removal and soot combustion with the novel coating. Furthermore, emission test results from base metal-palladium coated diesel particulate filters installed on operating taxis and related test cycle data are presented. A significant reduction in NO2 emission compared to present technology is measured.
X