Refine Your Search

Topic

Author

Search Results

Viewing 1 to 20 of 20
Journal Article

The Measured Impact of Vehicle Mass on Road Load Forces and Energy Consumption for a BEV, HEV, and ICE Vehicle

2013-04-08
2013-01-1457
The U.S. Department of Energy's Office of Energy Efficiency & Renewable Energy initiated a study that conducted coastdown testing and chassis dynamometer testing of three vehicles, each at multiple test weights, in an effort to determine the impact of a vehicle's mass on road load force and energy consumption. The testing and analysis also investigated the sensitivity of the vehicle's powertrain architecture (i.e., conventional internal combustion powertrain, hybrid electric, or all-electric) on the magnitude of the impact of vehicle mass. The three vehicles used in testing are a 2012 Ford Fusion V6, a 2012 Ford Fusion Hybrid, and a 2011 Nissan Leaf. Testing included coastdown testing on a test track to determine the drag forces and road load at each test weight for each vehicle. Many quality measures were used to ensure only mass variations impact the road load measurements.
Technical Paper

Emissions, Performance, and In-Cylinder Combustion Analysis in a Light-Duty Diesel Engine Operating on a Fischer-Tropsch, Biomass-to-Liquid Fuel

2005-10-24
2005-01-3670
SunDiesel™ is an alternative bio-fuel derived from wood chips that has certain properties that are superior to those of conventional diesel (D2). In this investigation, 100% SunDiesel was tested in a Mercedes A-Class (model year 1999), 1.7L, turbocharged, direct-injection diesel engine (EURO II) equipped with a common-rail injection system. By using an endoscope system, Argonne researchers collected in-cylinder visualization data to compare the engine combustion characteristics of the SunDiesel with those of D2. Measurements were made at one engine speed and load condition (2,500 rpm, 50% load) and four start-of-injection (SOI) points, because of a limited source of SunDiesel fuel. Significant differences in soot concentration, as measured by two-color optical pyrometry, were observed. The optical and cylinder pressure data clearly show significant differences in combustion duration and ignition delay between the two fuels.
Technical Paper

Predicting the Fuel Economy Impact of “Cold-Start” for Reformed Gasoline Fuel Cell Vehicles

2003-06-23
2003-01-2253
Hydrogen fuel cell vehicles (FCVs) appear to be a promising solution for the future of clean and efficient personal transportation. Issues of how to generate the hydrogen and then store it on-board to provide satisfactory driving range must still be resolved before they can compete with conventional vehicles. Alternatively, FCVs could obtain hydrogen from on-board reforming of gasoline or other fuels such as methanol or ethanol. On-board reformers convert fuel into a hydrogen-rich fuel stream through catalytic reactions in several stages. The high temperatures associated with fuel processing present an engineering challenge to warm up the reformer quickly and efficiently in a vehicle environment. Without a special warmup phase or vehicle hybridization, the reformer and fuel cell system must provide all power to move the vehicle, including ¼ power in 30 s, and ½ power in 3 min to satisfy the Federal Test Procedure (FTP) cycle demands.
Technical Paper

US National Laboratory R&D Programs in Support of Electric and Hybrid Electric Vehicle Batteries

2002-06-03
2002-01-1948
The successful commercialization of Electric Vehicles (EVs) and Hybrid Electric Vehicles (HEVs) can provide significant benefits by reducing the United States' growing dependence on petroleum fuels for transportation; decreasing polluting and greenhouse gas emissions; and facilitating a long-term transition to sustainable renewable energy sources. Recognizing these benefits, the U.S. Department of Energy (DOE) supports an active program of long-range R&D to develop electric vehicle (EV) and hybrid electric vehicle (HEV) technologies and to accelerate their commercialization. The DOE Office of Advanced Automotive Technologies (OAAT) supports several innovative R&D programs, conducted in partnership with DOE's national laboratories, industry, other government agencies, universities, and small businesses. The Office has two key R&D cooperative agreements with the U.S. Advanced Battery Consortium (USABC) to develop high-energy batteries for EVs and high-power batteries for HEVs.
Technical Paper

What FutureCar MPG Levels and Technology Will be Necessary?

2002-06-03
2002-01-1899
The potential peaking of world conventional oil production and the possible imperative to reduce carbon emissions will put great pressure on vehicle manufacturers to produce more efficient vehicles, on vehicle buyers to seek them out in the marketplace, and on energy suppliers to develop new fuels and delivery systems. Four cases for stabilizing or reducing light vehicle fuel use, oil use, and/or carbon emissions over the next 50 years are presented. Case 1 - Improve mpg so that the fuel use in 2020 is stabilized for the next 30 years. Case 2 - Improve mpg so that by 2030 the fuel use is reduced to the 2000 level and is reduced further in subsequent years. Case 3 - Case 1 plus 50% ethanol use and 50% low-carbon fuel cell vehicles by 2050. Case 4 - Case 2 plus 50% ethanol use and 50% low-carbon fuel cell vehicles by 2050. The mpg targets for new cars and light trucks require that significant advances be made in developing cost-effective and very efficient vehicle technologies.
Technical Paper

The DOE/NREL Next Generation Natural Gas Vehicle Program - An Overview

2001-05-14
2001-01-2068
This paper summarizes the Next Generation Natural Gas Vehicle (NG-NGV) Program that is led by the U.S. Department Of Energy's (DOE's) Office of Heavy Vehicle Technologies (OHVT) through the National Renewable Energy Laboratory (NREL). The goal of this program is to develop and implement one Class 3-6 compressed natural gas (CNG) prototype vehicle and one Class 7-8 liquefied natural gas (LNG) prototype vehicle in the 2004 to 2007 timeframe. OHVT intends for these vehicles to have 0.5 g/bhp-hr or lower emissions of oxides of nitrogen (NOx) by 2004 and 0.2 g/bhp-hr or lower NOx by 2007. These vehicles will also have particulate matter (PM) emissions of 0.01 g/bhp-hr or lower by 2004. In addition to ambitious emissions goals, these vehicles will target life-cycle economics that are compatible with their conventionally fueled counterparts.
Technical Paper

The DOE/NREL Environmental Science Program

2001-05-14
2001-01-2069
This paper summarizes the several of the studies in the Environmental Science Program being sponsored by DOE's Office of Heavy Vehicle Technologies (OHVT) through the National Renewable Energy Laboratory (NREL). The goal of the Environmental Science Program is to understand atmospheric impacts and potential health effects that may be caused by the use of petroleum-based fuels and alternative transportation fuels from mobile sources. The Program is regulatory-driven, and focuses on ozone, airborne particles, visibility and regional haze, air toxics, and health effects of air pollutants. Each project in the Program is designed to address policy-relevant objectives. Current projects in the Environmental Science Program have four areas of focus: improving technology for emissions measurements; vehicle emissions measurements; emission inventory development/improvement; ambient impacts, including health effects.
Technical Paper

Exhaust Aftertreatment Research for Heavy Vehicles

2001-05-14
2001-01-2064
The Office of Heavy Vehicle Technologies supports research to enable high-efficiency diesel engines to meet future emissions regulations, thus clearing the way for their use in light trucks as well as continuing as the most efficient powerplant for freight-haulers. Compliance with Tier 2 emission regulations for light-duty vehicles will require effective exhaust emission controls (aftertreatment) for diesels in these applications. Diesel-powered heavy trucks face a similar situation for the 2007 regulations announced by EPA in December 2000. DOE laboratories are working with industry to improve emission control technologies in projects ranging from application of new diagnostics for elucidating key mechanisms, to development and evaluation of prototype devices. This paper provides an overview of these R&D efforts, with examples of key findings and developments.
Technical Paper

Class 8 Trucks Operating On Ultra-Low Sulfur Diesel With Particulate Filter Systems: A Fleet Start-Up Experience

2000-10-16
2000-01-2821
Previous studies have shown that regenerating particulate filters are very effective at reducing particulate matter emissions from diesel engines. Some particulate filters are passive devices that can be installed in place of the muffler on both new and older model diesel engines. These passive devices could potentially be used to retrofit large numbers of trucks and buses already in service, to substantially reduce particulate matter emissions. Catalyst-type particulate filters must be used with diesel fuels having low sulfur content to avoid poisoning the catalyst. A project has been launched to evaluate a truck fleet retrofitted with two types of passive particulate filter systems and operating on diesel fuel having ultra-low sulfur content. The objective of this project is to evaluate new particulate filter and fuel technology in service, using a fleet of twenty Class 8 grocery store trucks. This paper summarizes the truck fleet start-up experience.
Technical Paper

Overview of Diesel Emission Control-Sulfur Effects Program

2000-06-19
2000-01-1879
This paper describes the results of Phase 1 of the Diesel Emission Control - Sulfur Effects (DECSE) Program. The objective of the program is to determine the impact of fuel sulfur levels on emissions control systems that could be used to lower emissions of nitrogen oxides (NOx) and particulate matter (PM) from vehicles with diesel engines. The DECSE program has now issued four interim reports for its first phase, with conclusions about the effect of diesel sulfur level on PM and total hydrocarbon (THC) emissions from the high-temperature lean-NOx catalyst, the increase of engine-out sulfate emissions with higher sulfur fuel levels, the effect of sulfur content on NOx adsorber conversion efficiencies, and the effect of fuel sulfur content on diesel oxidation catalysts, causing increased PM emissions above engine-out emissions under certain operating conditions.
Technical Paper

Emission Control Research to Enable Fuel Efficiency: Department of Energy Heavy Vehicle Technologies

2000-06-19
2000-01-2198
The Office of Heavy Vehicle Technologies supports research to enable high-efficiency diesel engines to meet future emissions regulations, thus clearing the way for their use in light trucks as well as continuing as the most efficient powerplant for freight-haulers. Compliance with Tier 2 rules and expected heavy duty engine standards will require effective exhaust emission controls (aftertreatment) for diesels in these applications. DOE laboratories are working with industry to improve emission control technologies in projects ranging from application of new diagnostics for elucidating key mechanisms, to development and tests of prototype devices. This paper provides an overview of these R&D efforts, with examples of key findings and developments.
Technical Paper

The Cooperative Automotive Research for Advanced Technology Program (CARAT): Accelerating the Commercialization of Innovative Technology

2000-04-02
2000-01-1594
The Cooperative Automotive Research for Advanced Technology (CARAT) program is designed to accelerate the commercialization of innovative technologies that will overcome barriers to achieving the goals of the Partnership for a New Generation of Vehicles Program. Aimed at harnessing the creativity and capabilities of American small businesses and colleges and universities, this unique technology R&D program seeks to develop and bring advanced technologies into use in production vehicles at a faster rate. CARAT's focus is developing and commercializing technology that overcomes key technical barriers preventing the production of vehicles with ultra-high fuel efficiency. CARAT begins with technologies that already have a firm technical basis and, through a unique three-stage process, ends with fully validated technologies ready for mass production. The program is open to all U.S. entrepreneurs and small businesses, colleges, and universities.
Technical Paper

Emissions from Buses with DDC 6V92 Engines Using Synthetic Diesel Fuel

1999-05-03
1999-01-1512
Synthetic diesel fuel can be made from a variety of feedstocks, including coal, natural gas and biomass. Synthetic diesel fuels can have very low sulfur and aromatic content, and excellent autoignition characteristics. Moreover, synthetic diesel fuels may also be economically competitive with California diesel fuel if produced in large volumes. Previous engine laboratory and field tests using a heavy-duty chassis dynamometer indicate that synthetic diesel fuel made using the Fischer-Tropsch (F-T) catalytic conversion process is a promising alternative fuel because it can be used in unmodified diesel engines, and can reduce exhaust emissions substantially. The objective of this study was a preliminary assessment of the emissions from older model transit operated on Mossgas synthetic diesel fuel. The study compared emissions from transit buses operating on Federal no. 2 Diesel fuel, Mossgas synthetic diesel (MGSD), and a 50/50 blend of the two fuels.
Technical Paper

The DOE/NREL Environmental Science & Health Effects Program - An Overview

1999-04-27
1999-01-2249
This paper summarizes current work in the Environmental Science & Health Effects (ES&HE) Program being sponsored by DOE's Office of Heavy Vehicle Technologies (OHVT) through the National Renewable Energy Laboratory (NREL). The program is regulatory-driven, and focuses on ozone, airborne particles, visibility and regional haze, air toxics, and health effects of air pollutants. The goal of the ES&HE Program is to understand atmospheric impacts and potential health effects that may be caused by the use of petroleum-based and alternative transportation fuels. Each project in the program is designed to address policy-relevant objectives. Studies in the ES&HE Program have four areas of focus: improving technology for emissions measurements; vehicle emissions measurements, emission inventory development/improvement; and ambient impacts, including health effects.
Technical Paper

Progress in Understanding the Toxicity of Gasoline and Diesel Engine Exhaust Emissions

1999-04-27
1999-01-2250
To help guide heavy vehicle engine, fuel, and exhaust after-treatment technology development, the U.S. Department of Energy and the Lovelace Respiratory Research Institute are conducting research not addressed elsewhere on aspects of the toxicity of particulate engine emissions. Advances in these technologies that reduce diesel particulate mass emissions may result in changes in particle composition, and there is concern that the number of ultrafine (<0.1 micron) particles may increase. All present epidemiological and laboratory data on the toxicity of diesel emissions were derived from emissions of older-technology engines. New, short-term toxicity data are needed to make health-based choices among diesel technologies and to compare the toxicity of diesel emissions to those of other engine technologies.
Technical Paper

Overview of the DOE Heavy Vehicle Technologies R&D Program

1999-04-26
1999-01-2235
The DOE Office of Heavy Vehicle Technologies (OHVT) focuses its research and development efforts on technologies that are critical to the needs of the U.S. heavy vehicle industry because of the importance of trucks and other heavy vehicles to economic activity and growth. A strategy has been crafted in collaboration with OHVT's industry customers (truck and engine manufacturers, fuel developers/producers, and their suppliers, truck users, and others) that will enable future energy demand of the U.S. heavy vehicle industry to be met, with reduced dependence on imported oil, and without adverse environmental effects. This strategy is centered on the technical strengths of the advanced compression-ignition (Diesel cycle) engine and its potential to use fuels from alternative feedstocks, and to reduce exhaust emissions to very low levels.
Technical Paper

The Role of Alternative Fuels in the New Generation of Vehicles

1995-10-01
952379
The Partnership for a New Generation of Vehicles (PNGV) is linking the research efforts of a broad spectrum of U.S. Federal agencies and laboratories with those of the domestic auto manufacturers in pursuit of three specific, interrelated goals: 1) reduce manufacturing production costs and product development times for all car and truck production; 2) pursue advanced technologies for near-term vehicle improvements that increase fuel efficiency and reduce emissions of standard vehicles; and 3) within the next decade, develop a new class of vehicle that will achieve up to three times the fuel efficiency of today's comparable vehicle, and, at the same time, cost no more to own and drive than today's automobile, maintain performance, size, and utility of comparable vehicles, and meet or exceed safety and emission requirements.
Technical Paper

The Fuel Economy Label-A Case Study in Government Rulemaking

1985-06-01
851214
On April 6, 1984, EPA announced a final rule (40 CFR Part 600, Vol. 49, No. 68) which amended the Federal Fuel Economy Information Program by prescribing adjustment factors for the Federal fuel economy numbers and by establishing a new format for the Federal fuel economy label displayed on new vehicles. This rule, one of over 5, 000 documents printed in the 1984 Federal Register rule section, presents some interesting lessons about development of government regulations. The contents of this rule amended an existing rule, did not have a “major” impact on the economy, and was not considered to be controversial. Nonetheless, this rule represents at least nine years of work, negotiations, and deliberations by Federal and private sector organizations. The history of this rule can provide insight into the Federal rulemaking process, and the forces affecting that process.
Technical Paper

Impact of Consumer and Manufacturer Decisions on New Car Fuel Economy

1983-02-01
830545
The 90 percent improvement in new car fuel economy between 1973 and 1982 has resulted from many types of new car purchase and new car manufacture decisions. Some of these decisions, such as purchasing a smaller car, buying a car with less performance, choosing a manual transmission, and selecting a diesel engine can be viewed as primarily new car consumer decisions. Over the decade where the price of gasoline tripled, consumer decisions accounted for about a third of the MPG increase. With the prospect of stable or declining gasoline prices for the near future, consumers may take back some of their past contributions to new car fuel economy. If new car buyers returned to their 1978 choices in auto characteristics the MPG would have been 9.3 percent lower than it actually was recorded in model year 1982. If consumers returned to the 1973 auto characteristics, a 17.4 percent reduction in MPG would have resulted in model year 1982.
Technical Paper

Consumer Response to Fuel Economy Information - Alternative Sources, Uses, and Formats

1982-02-01
820792
Abstract As part of a cooperative project with the Environmental Protection Agency the Department of Energy has conducted an analysis of consumer response to fuel economy information. The study examined consumer needs and level of understanding, alternative formats, fuel economy information in advertising and alternatives to the current Mileage Guide and Fuel Economy Label. The study techniques included a review advertising in the media, interviews with auto manufacturers' advertising departments, consumer surveys and focus group discussions with consumers and auto dealers. This paper presents the major quantitative and qualitative results with emphasis on (1) how the current Federal Fuel Economy Information Program fits into the overall fuel economy picture and (2) what kind of changes to the program could improve its effectiveness or reduce its cost.
X