Refine Your Search

Search Results

Viewing 1 to 15 of 15
Technical Paper

Portable Emissions Measurement for Retrofit Applications – The Beijing Bus Retrofit Experience

2008-06-23
2008-01-1825
In 2005, the United States Environmental Protection Agency (EPA) and Southwest Research Institute (SwRI) embarked on a mission to help the city of Beijing, China, clean its air. Working with the Beijing Environmental Protection Bureau (BEPB), the effort was a pilot diesel retrofit demonstration program involving three basic retrofit technologies to reduce particulate matter (PM). The three basic technologies were the diesel oxidation catalyst (DOC), the flowthrough diesel particulate filter (FT-DPF), and the wallflow diesel particulate filter (WF-DPF). The specific retrofit systems selected for the project were verified through the California Air Resources Board (CARB) or the EPA verification protocol [1]. These technologies are generally verified for PM reductions of 20-40 percent for DOCs, 40-50 percent for the FT-DPF, and 85 percent or more for the high efficiency WF-DPF.
Technical Paper

Characterization of the Fluid Deaeration Device for a Hydraulic Hybrid Vehicle System

2008-04-14
2008-01-0308
The attractiveness of the hydraulic hybrid concept stems from the high power density and efficiency of the pump/motors and the accumulator. This is particularly advantageous in applications to heavy vehicles, as high mass translates into high rates of energy flows through the system. Using dry case hydraulic pumps further improves the energy conversion in the system, as they have 1-4% better efficiency than traditional wet-case pumps. However, evacuation of fluid from the case introduces air bubbles and it becomes imperative to address the deaeration problems. This research develops a bubble elimination efficiency testing apparatus (BEETA) to establish quantitative results characterizing bubble removal from hydraulic fluid in a cyclone deaeration device. The BEETA system mixes the oil and air according to predetermined ratio, passes the mixture through a cyclone deaeration device, and then measures the concentration of air in the exiting fluid.
Technical Paper

Evaluating Real-World Fuel Economy on Heavy Duty Vehicles using a Portable Emissions Measurement System

2006-10-31
2006-01-3543
Current SAE practices for evaluating potential improvements in fuel economy on heavy-duty vehicles rely on gravimetric measurements of fuel tanks. However, the recent evolution of portable emissions measurement systems (PEMS) offers an alternative means of evaluating real-world fuel economy that may be faster and more cost effective. This paper provides a direct comparison of these two methods based on a recent EPA study conducted at Southwest Research Institute. More than 228 on-road tests were performed on two pairs of class 8 tractor-trailers according to SAE test procedure J1321 in an assessment of various chassis components designed to reduce drag losses on the vehicle. During these tests, SEMTECH-D™ portable emissions measurement systems from Sensor's, Incorporated were operating in each of the vehicles to evaluate emissions and to provide a redundant measure of fuel economy.
Technical Paper

Performance of Partial Flow Sampling Systems Relative to Full Flow CVS for Determination of Particulate Emissions under Steady-State and Transient Diesel Engine Operation

2002-05-06
2002-01-1718
The use of a partial flow sampling system (PFSS) to measure nonroad steady-state diesel engine particulate matter (PM) emissions is a technique for certification approved by a number of regulatory agencies around the world including the US EPA. Recently, there have been proposals to change future nonroad tests to include testing over a nonroad transient cycle. PFSS units that can quantify PM over the transient cycle have also been discussed. The full flow constant volume sampling (CVS) technique has been the standard method for collecting PM under transient engine operation. It is expensive and requires large facilities as compared to a typical PFSS. Despite the need for a cheaper alternative to the CVS, there has been a concern regarding how well the PM measured using a PFSS compared to that measured by the CVS. In this study, three PFSS units, including AVL SPC, Horiba MDLT, and Sierra BG-2 were investigated in parallel with a full flow CVS.
Technical Paper

Exhaust Particulate Matter Emissions from In-Use Passenger Vehicles Recruited in Three Locations: CRC Project E-24

1999-05-03
1999-01-1545
FTP-UDDS (urban dynamometer driving schedule) exhaust particulate matter (PM) emission rates were determined for 361 light-duty gasoline (LDGV) and 49 diesel passenger vehicles ranging in model year (MY) from 1965 to 1997. LDGVs were recruited into four MY categories. In addition, special effort was made to recruit LDGVs with visible smoke emissions, since these vehicles may be significant contributors to the mobile source PM emission inventory. Both light and heavy-duty diesels where included in the passenger diesel test fleet, which was insufficient in size to separate into the same MY categories as the LDGVs. Vehicles were tested as-received in three areas: Denver, Colorado; San Antonio, Texas; and the South Coast Air Quality Management District, California. The average PM emission rates were 3.3, 79.9, 384 and 558 mg/mi for 1991-97 MY LDGVs, pre-1981 LDGVs, smoking LDGVs and the diesel vehicles, respectively.
Technical Paper

A Method for Comparing Transient NOx Emissions With Weighted Steady State Test Results

1998-02-23
980408
This paper describes a method used to compare the emissions from transient operation of an engine with the emissions from steady state operating modes of the engine. Weightings were assigned to each mode based on the transient cycle under evaluation. The method of assigning the weightings for each mode took into account several factors, including the distance between each second of the transient cycle's speed-and-torque point requests (in a speed vs. torque coordinate system) and the given mode. Two transient cycles were chosen. The transient cycles were taken from actual in-use data collected on nonroad engines during in-field operation. The steady state modes selected were based on both International Standard Organization (ISO) test modes, as well as, augmentation based on contour plots of the emissions from nonroad diesel engines. Twenty-four (24) steady-state modes were used. The transient cycle's speed-and-torque points are used to weight each steady state mode in the method.
Technical Paper

The Effect of Diesel Sulfur Content and Oxidation Catalysts on Transient Emissions at High Altitude from a 1995 Detroit Diesel Series 50 Urban Bus Engine

1996-10-01
961974
Regulated emissions (THC, CO, NOx, and PM) and particulate SOF and sulfate fractions were determined for a 1995 Detroit Diesel Series 50 urban bus engine at varying fuel sulfur levels, with and without catalytic converters. When tested on EPA certification fuel without an oxidation catalyst this engine does not appear to meet the 1994 emissions standards for heavy duty trucks, when operating at high altitude. An ultra-low (5 ppm) sulfur diesel base stock with 23% aromatics and 42.4 cetane number was used to examine the effect of fuel sulfur. Sulfur was adjusted above the 5 ppm level to 50, 100, 200, 315 and 500 ppm using tert-butyl disulfide. Current EPA regulations limit the sulfur content to 500 ppm for on highway fuel. A low Pt diesel oxidation catalyst (DOC) was tested with all fuels and a high Pt diesel oxidation catalyst was tested with the 5 and 50 ppm sulfur fuels.
Technical Paper

Compound Injection to Assure the Performance of Motor Vehicle Emissions Sampling Systems

1996-05-01
961118
There are many sources of variability when sampling motor vehicle emissions, including intermittant losses to “wetted” sampling system surfaces if water condensation occurs and thermal decomposition if sampling system surfaces get excessively hot. The risk of losses varies during typical transient speed emissions tests and depends upon many variables such as temperature, pressure, exhaust dilution ratio, dilution air humidity, fuel composition, and emissions composition. Procedures are described for injection of known concentrations of compounds of interest into transient motor vehicle exhaust for the purpose of characterizing losses between the vehicle tailpipe and emissions analyzer.
Technical Paper

An Investigation of the Effect of Differing Filter Face Velocities on Particulate Mass Weight from Heavy-Duty Diesel Engines

1996-02-01
960253
Due to continuing reductions in EPA's emission standard values for exhaust particulate emissions, industry production has shifted towards engines that produce very low amounts of particulate emissions. Thus, it is very possible that future engines will challenge the error range of the current instrumentation and procedures used to measure particulate emissions by being designed to produce extremely low levels of particulates. When low particulate emitting engines are sampled at low flowrates, the resulting filter loadings may violate the minimum filter loading recommendation in the Heavy Duty Federal Test Procedure [1]. Conversely, higher flow rates may be an inappropriate option for increasing filter loading due to the possibility of stripping volatile organic compounds from the particulate sample or otherwise artificially reducing the accumulated mass [2].
Technical Paper

Light Duty Automotive Fuel Economy … Trends thru 1985

1985-05-01
850550
This, the thirteenth in a series of papers on trends in EPA fuel economy, covers both passenger cars and light trucks and concentrates on the current model year, 1985. It differs from previous papers in two ways: 1) Model years 1975, 1980 and 1985 are highlighted, with the model years in between these rarely discussed; 2) The progress of the industry, as a whole, in improving fuel economy since 1975 is emphasized, and individual manufacturer data are de-emphasized. Conclusions are presented on the trends in fuel economy of the car and light truck fleets; the Domestic, European and Japanese market sectors; and various vehicle classes.
Technical Paper

Passenger Car Fuel Economy… Trends Through 1984

1984-02-01
840499
This the twelfth in a series of Papers on trends in EPA fuel economy, concentrates as usual on the current Model Year (1984). Final Corporate Average Fuel Economy (CAFE) production volumes and MPG figures have been used to update the data bases through the 1982 Model Year. This paper is different from earlier papers in four ways: 1) manufacturer-supplied production forecasts have been adjusted for both model years 1983 and 1984. 2) sales weighted MPG values at the nameplate level of aggregation are presented. 3) much of the analysis is stratified at the Domestic/European/Japanese manufacturer level, and 4) fuel economy analysis for Light Duty Trucks is not included. Conclusions are presented on the trends in fuel economy of the fleet as a whole and for various classes of vehicles.
Technical Paper

Light Duty Automotive Fuel Economy … Trends through 1982

1982-02-01
820300
EPA Fuel economy figures are presented for model year 1982 cars and light duty trucks. Comparisons with the MPG figures of prior years are included. Sales penetrations of various vehicle, engine, and emission control design features are given, and domestic cars' MPG characteristics are compared to that of imports', gasoline vehicle MPG is compared to Diesel MPG, and 49-states MPG is compared to California MPG. Usage of newer vehicle technologies is continuing to increase, leading to continued growth in fuel economy capability in spite of stringent emission standards.
Technical Paper

Light Duty Automotive Fuel Economy …Trends through 1981

1981-02-01
810386
EPA new-model fuel economy figures are presented for passenger vehicles and light duty trucks (those with GVW ratings up to 8500 lbs). The 1981 models are emphasized, with some comparisons to prior years included. Reader familiarity with the EPA tests, data bases, and analytical methods is assumed. Principal two-way analyses include comparisons of domestic vs. import, gasoline vs. Diesel, and Federal (49-state) vs. California vehicles. Sales fractions for a number of vehicle and engine emission control design features are included. The principal finding is that increased use of newer vehicle and emission control technologies in 1981 has accompanied significant fuel economy gains in spite of the tougher 1981 emission standards.
Technical Paper

Emission Patterns of Diesel-Powered Passenger Cars - Part II

1977-02-01
770168
An experimental program was conducted to characterize the gaseous and particulate emissions from a 1975 Peugeot 504D light duty diesel-powered vehicle. The vehicle was tested over the 1975 Federal Test Procedure, Highway Fuel Economy Test, and Sulfate Emissions Test driving cycles using four different fuels covering a fair range of composition, density, and sulfur content. In addition to fuel economy and regulated gaseous emission measurements of hydrocarbons, carbon monoxide, and oxides of nitrogen, emission measurements were also obtained for non-regulated pollutants including sulfur dioxide, sulfates, aldehydes, benzo[a]pyrene, carbonyl sulfide, hydrogen cyanide, nonreactive hydrocarbons, and particulate matter. The results are discussed in terms of emission trends due to either fuel type or driving cycle influence.
Technical Paper

The Environmental Implications of Manganese as an Alternate Antiknock

1975-02-01
750926
Methylcyclopentadienylmanganese tricarbonyl (MMT) while originally marketed in the late 50's and early 60's as a secondary antiknock to leaded fuels, is presently being marketed as a primary antiknock targeted for the EPA required lead-free gasoline grade tailored for use in catalyst-equipped vehicles. This paper reviews and discusses new information related to the effect of manganese gasoline additives on the performance of catalysts, regulated emissions, and several currently unregulated emissions. In addition, estimates of human exposures to automotive-generated manganese particulate and the toxicological characteristics of manganese are discussed as they related to an assessment of the potential public health consequences should manganese additives come into widespread use. EPA's position regarding the use of manganese additives is presented and discussed.
X