Refine Your Search

Search Results

Viewing 1 to 5 of 5
Technical Paper

Effect of North American Certification Test Fuels on Emissions from On-Road Motorcycles

2021-09-21
2021-01-1225
Chassis dynamometer tests were conducted on three Class III on-highway motorcycles produced for the North American market and equipped with advanced emission control technologies in order to inform emissions inventories and compare the impacts of existing Tier 2 (E0) fuel with more market representative Tier 3 and LEV III certification fuels with 10% ethanol. For this study, the motorcycles were tested over the US Federal Test Procedure (FTP) and the World Motorcycle Test Cycle (WMTC) certification test cycles as well as a sample of real-world motorcycle driving informally referred to as the Real World Driving Cycle (RWDC). The primary interest was to understand the emissions changes of the selected motorcycles with the use of certification fuels containing 10% ethanol compared to 0% ethanol over the three test cycles.
Technical Paper

Effect of Driving Cycles on Emissions from On-Road Motorcycles

2020-04-14
2020-01-0377
Chassis dynamometer testing was conducted with three on-highway motorcycles produced for the North American market with engine displacements of 296 cc, 749 cc and 1198 cc to better inform criteria pollutant emissions inventories. The motorcycles were tested using US Tier 2 certification fuel over the Federal Test Procedure (FTP), World Motorcycle Test Cycle (WMTC) and a cycle based on a sample of real-world motorcycle driving, informally referred to as the ‘Real World Driving Cycle’ (RWDC). Emissions characterization includes composite, individual test phase and 1Hz cumulative results for various criteria pollutants for each test cycle. Overall, it was found that the higher peak speed rates and peak torque levels observed during the RWDC are more fully represented in the WMTC than the FTP. The use of the WMTC and RWDC cycles generally translated into higher emissions rates compared to the FTP and in particular for nitrogen oxides and carbon monoxide.
Technical Paper

Fuel Effects Study with In-Use Two-Stroke Motorcycles and All-Terrain-Vehicles

2013-10-14
2013-01-2518
This paper covers work performed for the California Air Resources Board and US Environmental Protection Agency by Southwest Research Institute. Emission measurements were made on four in-use off-road two-stroke motorcycles and all-terrain vehicles utilizing oxygenated and non-oxygenated fuels. Emission data was produced to augment ARB and EPA's off-road emission inventory. It was intended that this program provide ARB and EPA with emission test results they require for atmospheric modeling. The paper describes the equipment and engines tested, test procedures, emissions sampling methodologies, and emissions analytical techniques. Fuels used in the study are described, along with the emissions characterization results. The fuel effects on exhaust emissions and operation due to ethanol content and fuel components is compared.
Technical Paper

Fuel Effects Study with Small (<19kW) Spark-Ignited Off-Road Equipment Engines

2013-10-14
2013-01-2517
This paper covers work performed for the California Air Resources Board and the United States Environmental Protection Agency by Southwest Research Institute. Emission measurements were made on nine types of off-road equipment with small (<19kW) spark-ignited engines including handheld and non-handheld equipment utilizing oxygenated and non-oxygenated fuels. Emission data was produced to augment ARB and EPA's off-road emission inventory. It was intended that this program provide ARB and EPA with emission test results they require for atmospheric modeling. The paper describes the equipment and engines tested, test procedures, emissions sampling methodologies, and emissions analytical techniques. Fuels used in the study are described, along with the emissions characterization results. The fuel effects on exhaust emissions and operation due to ethanol content and fuel components is compared.
Technical Paper

Cost-Effectiveness of a Lightweight Design for 2017-2020: An Assessment of a Midsize Crossover Utility Vehicle

2013-04-08
2013-01-0656
In response to more stringent greenhouse gas and fuel economy standards and increasing consumer demand for fuel efficient vehicles, automobile manufacturers have identified vehicle mass reduction as a leading strategy for reducing greenhouse gas emissions and improving fuel economy. The potential for significant levels of mass reduction can only be understood using a full-vehicle analysis, partly because mass reduction in one vehicle system or part can enable additional reductions elsewhere. This paper describes a holistic approach in which the most cost-effective mass reduction ideas were selected using a structured optimization procedure, and the crash safety of the resultant design was evaluated using a full-vehicle engineering analysis.
X