Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Effect of Current and SOC on Round-Trip Energy Efficiency of a Lithium-Iron Phosphate (LiFePO4) Battery Pack

2015-04-14
2015-01-1186
While equivalent circuit modeling is an effective way to model the performance of automotive Li-ion batteries, in some applications it is more convenient to refer to round-trip energy efficiency. Energy efficiency of either cells or full packs is seldom documented by manufacturers in enough detail to provide an accurate impression of this metric over a range of operating conditions. The energy efficiency of a full battery pack may also be subject to more variables than would be represented by extrapolating results obtained from a single cell, and can be more demanding to measure in an accurate and consistent manner. Roundtrip energy efficiency of a 22.8-kWh A123 Li-ion (Lithium Iron Phosphate, LiFePO4) battery pack was measured by applying a fixed quantity of charge and discharge current between 0.2C and 2C rates and at SOCs between 10% and 90% at an average temperature of 23°C.
Technical Paper

Development of Advanced Light-Duty Powertrain and Hybrid Analysis Tool

2013-04-08
2013-01-0808
The Advanced Light-Duty Powertrain and Hybrid Analysis tool was created by Environmental Protection Agency to evaluate the greenhouse gas emissions and fuel efficiency of light-duty vehicles. It is a physics-based, forward-looking, full vehicle computer simulator that is capable of analyzing various vehicle types equipped with different powertrain technologies. The software is built on MATLAB/Simulink. This first version release of the simulation tool models conventional vehicles and is capable of evaluating effects of off-cycle technologies on greenhouse gas emissions, such as air conditioning, electrical load reduction, road load reduction by active aerodynamics, and engine start-stop. This paper introduces the simulation tool by describing its basic model architecture and presenting its underlying physics as well as model formulations. It describes the simulation capability along with its graphical user interface of the tool, designed for off-cycle technology analysis purposes.
Technical Paper

Complex Systems Method Applied to Identify Carbon Dioxide Emission Reductions for Light-Duty Vehicles for the 2020-2025 Timeframe

2012-04-16
2012-01-0360
The U.S. Environmental Protection Agency, U.S. Department of Transportation's National Highway and Traffic Safety Administration, and the California Air Resources Board have recently released proposed new regulations for greenhouse gas emissions and fuel economy for light-duty vehicles and trucks in model years 2017-2025. These proposed regulations intend to significantly reduce greenhouse gas emissions and increase fleet fuel economy from current levels. At the fleet level, these rules the proposed regulations represent a 50% reduction in greenhouse gas emissions by new vehicles in 2025 compared to current fleet levels. At the same time, global growth, especially in developing economies, should continue to drive demand for crude oil and may lead to further fuel price increases. Both of these trends will therefore require light duty vehicles (LDV) to significantly improve their greenhouse gas emissions over the next 5-15 years to meet regulatory requirements and customer demand.
X