Refine Your Search

Search Results

Viewing 1 to 2 of 2
Journal Article

Effect of Lubricant on Two-phase Refrigerant Distribution in Microchannel Evaporator

2013-04-08
2013-01-1508
This paper presents a model analysis of oil effects on the distribution of two phase refrigerant in a parallel flow microchannel evaporator. A microchannel evaporator model developed and presented earlier (SAE paper 2012-01-0321) is enhanced by inclusion of the thermodynamic and transport properties of refrigerant-oil mixture and their impact on boiling heat transfer and pressure drop characteristics. R134a and PAG oil are selected as the working pair. Viscosity effect and OCR effect on refrigerant distribution are investigated using this model, and the results show that 1) High viscosity is detrimental for refrigerant distribution. 2) As OCR increases, distribution becomes worse; but at very high OCR, distribution becomes better. Some initial experimental results show that distribution becomes worse when OCR changes from 0.1% to 3%.
Technical Paper

Measurement and Visualization of R134a Distribution in the Vertical Header of the Microchannel Heat Exchanger

2013-04-08
2013-01-1498
Distribution of R134a in four different vertical headers of microchannel heat exchanger was investigated experimentally. R134a was provided into the header by the microchannel tubes (5 or 10 tubes) in the bottom pass. It left the header through the microchannel tubes (5 or 10 tubes) in the top pass representing the upward flow in the heat pump mode of the reversible systems. The inlet quality was varied from 0.2 to 0.8, and the inlet mass flow rate was from 1.5 to 4.5 kg/h per microchannel tube. Among the test conditions, the aluminum and transparent headers show similar results: refrigerant distribution is better when reducing quality at the same mass flow rate and when increasing mass flow rate at the same quality. Increasing the tubes protrusion and the number of the microchannel tubes usually improve the distribution due to the increase in mass flux. Based on the visualization, churn and separated flow regimes are identified.
X