Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Investigation of Three Different Mixtures of Ecofuels Used on a Perkins Engine on a Test Bed

2010-10-05
2010-01-1970
This paper describes and analyzes the results of investigations of application of heavy alcohols as an ingredient of diesel fuel. Three different mi xtures of butanol (as heavy alcohol), rape oil (as vegetable oil) and conventional diesel fuel (this mixture was called the biomixdiesel-BMD) were tested using a Perkins engine on a test bed. Contrary to existing experiences both the maximum power output and the maximum torque of the engine were higher in the whole range of the speed of the engine crankshaft when the engine biomixdiesel (BMD) was reinforced. The addition of the component biomix to fuel influenced the specific fuel consumption. Generally, with the larger part of the biomix components the specific fuel consumption were higher. Also the engine power was higher and one should expect that in exploitation the specific fuel consumption should not increase. It is very important that this fuel could be used to reinforce old, already existing and the future diesel engines.
Journal Article

Influence of Cold Start and Ambient Temperatures on Greenhouse Gas (GHG) Emissions, Global Warming Potential (GWP) and Fuel Economy for SI Car Real World Driving

2010-04-12
2010-01-0477
The transport sector is one of the major contributors to greenhouse gas emissions. This study investigated three greenhouse gases emitted from road transport using a probe vehicle: CO₂, N₂O and CH₄ emissions as a function of cold start and ambient temperatures. A real-world driving cycle has been developed at Leeds and referred as LU-BS, which has an urban free flow driving pattern. The test vehicle was driven on the same route by the same driver on different days with different ambient temperatures. All the journeys were started from cold. An in-vehicle FTIR emission measurement system was installed on a EURO2 emission compliance SI car for emissions measurement at a rate of 0.5 Hz. This emission measurement system was calibrated on a standard CVS measurement system and showed an excellent agreement on the CO₂ measurement with the CVS results. The N₂O and CH₄ were calibrated by calibration gas bottles.
X