Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Increasing Exhaust Temperature of an Idling Light-Duty Diesel Engine through Post-Injection and Intake Throttling

2018-04-03
2018-01-0223
Especially in crowded urban areas, light-duty vehicles often spend a great deal of time operating under idle conditions for which exhaust temperatures may be too low to maintain exhaust catalyst activity. This study investigated two methods of increasing Diesel exhaust temperature of a light-duty Diesel engine under idle conditions: post injection of fuel after TDC and intake throttling. For this particular study, EGR was not used. The engine operating parameters considered included three idle speeds of 800, 1100 and 1200 rpm, with the engine fully warmed up. Two rail pressures of 500 and 800 bar were studied with the injection strategy being the primary variable. The parameters measured included exhaust temperature, exhaust concentrations of NOx and HCs, as well as fuel consumption, IMEP and COV of IMEP. For the baseline idle conditions, manifold-out exhaust temperature was approximately 100 °C-105 °C.
Journal Article

Simulation of Organic Rankine Cycle Electric Power Generation from Light-Duty Spark Ignition and Diesel Engine Exhaust Flows

2013-04-08
2013-01-1644
The performance of an organic Rankine cycle (ORC) used to recover waste heat from the exhaust of a diesel and a spark ignition engine for electric power generation was modeled. The design elements of the ORC incorporated into the thermodynamic model were based on an experimental study performed at Oak Ridge National Laboratory in which a regenerative organic Rankine cycle system was designed, assembled and integrated into the exhaust of a 1.9 liter 4-cylinder automotive turbo-diesel. This engine was operated at a single fixed-load point at which Rankine cycle state point temperatures as well as the electrical power output of an electric generator coupled to a turbine that expanded R245fa refrigerant were measured. These data were used for model calibration.
X