Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Engine Combustion Hardware Diagnostics in an End-of-Line Cold Test Stand

2022-03-29
2022-01-0270
Internal combustion engines must be individually tested at the end of the manufacturing process. In recent years classical hot test stands, where the engine is run for several minutes, are being replaced by cold test alternatives. The latter allow fast testing cycles using an external motoring device without using any fuel. The absence of fuel and combustion lowers the health and safety requirements for the plant itself and subsequent engine transport, but this comes at the cost of additional difficulties for the verification of the correct assembly and operation of the combustion system hardware. This paper presents a cold test concept, which includes dedicated measurements and algorithms for the detection of common failures in the manufacturing process, including those of the combustion hardware.
Technical Paper

On-Line Optimization of Dual-Fuel Combustion Operation by Extremum Seeking Techniques

2021-04-06
2021-01-0519
Dual-fuel combustion engines have shown the potential to extend the operating range of Homogeneous Charge Compression Ignition (HCCI) by using several combustion modes, e.g. Reactivity Controlled Compression Ignition (RCCI) at low/medium load, and Partially Premixed Compression (PPC) at high load. In order to optimize the combustion mode operation, the respective sensitivity to the control inputs must be addressed. To this end, in this work the extremum seeking algorithm has been investigated. By definition, this technique allows to detect the control input authority over the system by perturbing its value by a known periodic signal. By analyzing the system response and calculating its gradient, the control input can be adjusted to reach optimal operation. This method has been applied to a dual-fuel engine under fully, highly and partially premixed conditions where the feedback information was provided by in-cylinder pressure and NOx sensors.
X