Refine Your Search

Topic

Author

Search Results

Technical Paper

Hydrogen Engine Insights: A Comprehensive Experimental Examination of Port Fuel Injection and Direct Injection

2024-04-09
2024-01-2611
The environmental and sustainable energy concerns in transport are being addressed through the decarbonisation path and the potential of hydrogen as a zero-carbon alternative fuel. Using hydrogen to replace fossil fuels in various internal combustion engines shows promise in enhancing efficiency and achieving carbon-neutral outcomes. This study presents an experimental investigation of hydrogen (H2) combustion and engine performance in a boosted spark ignition (SI) engine. The H2 engine incorporates both port fuel injection (PFI) and direct injection (DI) hydrogen fuel systems, capable of injecting hydrogen at pressures of up to 4000 kPa in the DI system and 1000 kPa in the PFI operations. This setup enables a direct comparison of the performance and emissions of the PFI and DI operations. The study involves varying the relative air-to-hydrogen ratio (λ) at different speeds to explore combustion and engine limits for categorising and optimising operational regions.
Technical Paper

Experimental Investigation of Combustion Characteristics, Performance, and Emissions of a Spark Ignition Engine with 2nd Generation Bio-Gasoline and Ethanol Fuels

2023-04-11
2023-01-0339
Climate change mitigation is the main challenge for the automotive industry, as the government issues legislation to combat CO2 emissions. In addition to electrification and battery electric vehicles, using low-carbon and zero-carbon fuels in Internal Combustion (IC) engines can also be an effective way to reach net zero-carbon transport. This study investigated and compared the combustion characteristics, performance and emissions of a highly boosted spark ignition (SI) engine fuelled with EU VI 95 RON E10 gasoline and blends of second-generation bio-gasoline with different ethanol contents of 5% (E5), 10% (E10), and 20% (E20). The single-cylinder SI engine was equipped with a centrally mounted high-pressure injector and supplied externally boosted air. Engine experiments were conducted at 2000 RPM and 3000 RPM with low and high load operations.
Technical Paper

Combustion Characteristics and Exhaust Emissions of a Direct Injection SI Engine with Pure Ethanol and Methanol in Comparison to Gasoline

2022-08-30
2022-01-1089
The automobile industry is under intense pressure to reduce carbon dioxide (CO2) emissions of vehicles. There is also increasing pressure to reduce the other tail-pipe emissions from vehicles to combat air pollution. Electric powertrains offer great potential for eliminating tailpipe CO2 and all other tailpipe emissions. However, current battery technology and recharging infrastructure still present limitations for some applications, where a continuous high-power demand is required. Furthermore, not all markets have the infrastructure to support a sizeable electric fleet and until the grid energy generation mix is of a sufficiently low carbon intensity, then significant vehicle life-cycle CO2 savings could not be realized by the Battery Electric Vehicles. This investigation examines the effects of combustion, efficiencies, and emissions of two alcohol fuels that could help to significantly reduce CO2 in both tailpipe and the whole life cycle.
Technical Paper

A Numerical Study on Turbocharging System for PFI-SI Type Hydrogen Combustion Engine

2021-09-05
2021-24-0094
The hydrogen internal combustion engine (H2ICE) has received increasing attention in various industry sectors as it produces nearly zero carbon emissions. However, it has been reported that the power output is lower than the gasoline engine especially for port fuel injection (PFI) type hydrogen engines. It is mainly due to low density of the hydrogen which reduces volumetric efficiency. A turbocharging system can improve the power output by pushing more air into the combustion chamber. However, it was observed that incorrect matching hampers the increment of the power output which results in low specific power (<30kW/L). To achieve the equivalent performance of a turbocharged PFI gasoline engine, the required boosting system for the PFI H2ICE has been numerically investigated using 1D engine simulation. As a base engine, a 1.6L turbocharged PFI gasoline engine was used.
Technical Paper

A Comparison Study on the Performance of the Multi-Stroke Cycle SI Engine under Low Load

2021-04-06
2021-01-0530
Pumping Mean Effective Pressure (PMEP) is the main factor limiting the improvement of thermal efficiency in a spark-ignition (SI) engine under low load. One of the ways to reduce the pumping loss under low load is to use Cylinder DeActivation (CDA). The CDA aims at reducing the firing density (FD) of the SI engine under low load operation and increasing the mass of air-fuel mixture within one cycle in one cylinder to reduce the throttling effect and further reducing the PMEP. The multi-stroke cycles can also reduce the firing density of the SI engine after some certain reasonable design, which is feasible to improve the thermal efficiency of the engine under low load in theory. The research was carried out on a calibrated four-cylinder SI engine simulation platform. The thermal efficiency improvements of the 6-stroke cycle and 8-stroke cycle to the engine performance were studied compared with the traditional 4-stroke cycle under low load conditions.
Technical Paper

Combustion Visualization and Experimental Study on Multi-Point Micro-Flame Ignited (MFI) Hybrid Lean-Burn Combustion in 4-Stroke Gasoline Engines

2020-09-15
2020-01-2070
Lean-burn combustion is an effective method for increasing the thermal efficiency of gasoline engines fueled with stoichiometric fuel-air mixture, but leads to an unacceptable level of high cyclic variability before reaching ultra-low nitrogen oxide (NOx) emissions emitted from conventional gasoline engines. Multi-point micro-flame ignited (MFI) hybrid combustion was proposed to overcome this problem, and can be can be grouped into double-peak type, ramp type and trapezoid type with very low frequency of appearance. This research investigates the micro-flame ignition stages of double-peak type and ramp type MFI combustion captured by high speed photography. The results show that large flame is formed by the fast propagation of multi-point flame occurring in the central zone of the cylinder in the double-peak type. However, the multiple flame sites occur around the cylinder, and then gradually propagate and form a large flame accelerated by the independent small flame in the ramp type.
Technical Paper

Numerical Investigation of Diesel-Spray-Orientated Piston Bowls on Natural Gas and Diesel Dual Fuel Combustion Engine

2020-04-14
2020-01-0311
Low combustion efficiency and high hydrocarbon emissions at low loads are key issues of natural gas and diesel (NG-diesel) dual fuel engines. For better engine performance, two diesel-spray-orientated (DSO) bowls were developed based on the existing diesel injector of a heavy-duty diesel engine with the purpose of placing more combustible natural gas/air mixture around the diesel spray jets. A protrusion-ring was designed at the rim of the piston bowl to enhance the in-cylinder flame propagation. Numerical simulations were conducted for a whole engine cycle at engine speed of 1200 r/min and indicated mean effective pressure (IMEP) of 0.6 MPa. Extended coherent flame model 3 zones (ECFM-3Z) combustion model with built-in soot emissions model was employed. Simulation results of the original piston bowl agreed well with the experimental data, including in-cylinder pressure and heat released rate (HRR), as well as soot and methane emissions.
Technical Paper

Effect of a Split-Injection Strategy on the Atomisation Rate Using a High Pressure Gasoline DI Injector

2020-04-14
2020-01-0322
The Gasoline direct-injection (GDI) engine can emit high levels of particulate matter and unburned Hydrocarbons when operating under stratified charge combustion mode. Injecting late in the compression stroke means the fuel has insufficient time to atomise and evaporate. This could cause fuel film accumulation on the piston surface and combustion liner. Locally fuel rich diffusion combustion could also result in the formation of soot particles. Employing a split-injection strategy can help tackle these issues. The first injection is initiated early in the intake stroke and could ensure a global homogeneous charge. The second injection during the compression stroke could help form a fuel-rich charge in the vicinity of the spark plug. Many studies have established the crucial role that a split-injection strategy plays in the stratified charge operation of GDI engines.
Technical Paper

On-Engine Performance Evaluation of a New-Concept Turbocharger Compressor Housing Design

2020-04-14
2020-01-1012
Following market demands for a niche balance between engine performance and legislation requirement, a new-concept compressor scroll has been designed for small to medium size passenger cars. The design adopts a slight deviation from the conventional method, thus resulting in broader surge margin and better efficiency at off-design region. This paper presents the performance evaluation of the new compressor scroll on the cold-flow gas-stand followed by the on-engine testing. The testing program focused on back-to-back comparison with the standard compressor scroll, as well as identifying on-engine operational regime with better brake specific fuel consumption (BSFC) and transient performance. A specially instrumented 1.6L gasoline engine was used for this study. The engine control unit configuration is kept constant in both the compressor testing.
Technical Paper

Performance Improvement of an Asymmetric Twin Scroll Turbocharger Turbine through Secondary Flow Injection

2020-04-14
2020-01-1011
A powerful and efficient turbocharger turbine benefits the engine in many aspects, such as better transient response, lower NOx emissions and better fuel economy. The turbine performance can be further improved by employing secondary flow injection through an injector over the shroud section. A secondary flow injection system can be integrated with a conventional turbine without affecting its original design parameters, including the rotor, volute, and back disk. In this study, a secondary flow injection system has been developed to fit for an asymmetric twin-scroll turbocharger turbine, which was designed for a 6-cylinder heavy-duty diesel engine, aiming at improving the vehicle’s performance at 1100 rpm under full-loading conditions. The shape of the flow injector is similar to a single-entry volute but can produce the flow angle in both circumferential and meridional directions when the flow leaves the injector and enters the shroud cavity.
Technical Paper

Axial Flow Turbine Concept for Conventional and e-Turbocharging

2019-09-09
2019-24-0185
Engine downsizing has established itself as one of the most successful strategies to reduce fuel consumption and pollutant emissions in the automotive field. To this regard, a major role is played by turbocharging, which allows an increase in engine power density, so reducing engine size and weight. However, the need for turbocharging imposes some issues to be solved. In the attempt of mitigating turbo lag and poor low-end torque, many solutions have been presented in the open literature so far, such as: low inertia turbine wheels and variable geometry turbines; or even more complex concepts such as twin turbo and electrically assisted turbochargers. None of them appears as definitive, though. As a possible way of reducing turbine rotor inertia, and so the turbo lag, also the change of turbine layout has been investigated, and it revealed itself to be a viable option, leading to the use of mixed-flow turbines.
Technical Paper

Experimental Studies of Gasoline Auxiliary Fueled Turbulent Jet Igniter at Different Speeds in Single Cylinder Engine

2019-09-09
2019-24-0105
Turbulent Jet Ignition (TJI) is a pre-chamber ignition system for an otherwise standard gasoline spark ignition engine. TJI works by injecting chemically active turbulent jets to initiate combustion in a premixed fuel/air mixture. The main advantage of TJI is its ability to ignite and burn, completely, very lean fuel/air mixtures in the main chamber charge. This occurs with a very fast burn rate due to the widely distributed ignition sites that consume the main charge rapidly. Rapid combustion of lean mixtures leads to lower exhaust emissions due to more complete combustion at a lower temperature. For this research, the effectiveness of the Mahle TJI system on combustion stability, lean limit and emissions in a single cylinder spark engine fueled with gasoline at different speeds was investigated. The combustion and heat release process was analyzed and the exhaust emissions were measured.
Technical Paper

Steady-State, Transient and WLTC Drive-Cycle Experimental Performance Comparison between Single-Scroll and Twin-Scroll Turbocharger Turbine

2019-04-02
2019-01-0327
The use of twin-scroll turbocharger turbine in automotive powertrain has been known for providing better transient performance over conventional single-scroll turbine. This has been accredited to the preservation of exhaust flow energy in the twin-scroll volute. In the current study, the performance comparison between a single and twin-scroll turbine has been made experimentally on a 1.5L passenger car gasoline engine. The uniqueness of the current study is that nearly identical engine hardware has been used for both the single and twin-scroll turbine volutes. This includes the intake and exhaust manifold geometry, turbocharger compressor, turbine rotor and volute scroll A/R variation trend over circumferential location. On top of that, the steady-state engine performance with both the volutes, has also been tuned to have matching brake torque.
Technical Paper

Analyzing the Limitations of the Rider and Electric Motorcycle at the Pikes Peak International Hill Climb Race

2019-04-02
2019-01-1125
This paper describes a post-race analysis of team KOMMIT EVT’s electric motorcycle data collected during the 2016 Pikes Peak International Hill Climb (PPIHC). The motorcycle consumed approximately 4 kWh of battery energy with an average and maximum speed of 107 km/h and 149 km/h, respectively. It was the second fastest electric motorcycle with a finishing time of 11:10.480. Data was logged of the motorcycle’s speed, acceleration, motor speed, power, currents, voltages, temperatures, throttle position, GPS position, rider’s heart rate and the ambient environment (air temperature, pressure and humidity). The data was used to understand the following factors that may have prevented a faster time: physical fitness of the rider, thermal limits of the motor and controller, available battery energy and the sprocket ratio between the motor and rear wheel.
Technical Paper

The Application of Controlled Auto-Ignition Gasoline Engines -The Challenges and Solutions

2019-04-02
2019-01-0949
Controlled Auto-Ignition (CAI) combustion, also known as Homogeneous Charge Compression Ignition (HCCI), has the potential to simultaneously reduce the fuel consumption and nitrogen oxides emissions of gasoline engines. However, narrow operating region in loads and speeds is one of the challenges for the commercial application of CAI combustion to gasoline engines. Therefore, the extension of loads and speeds is an important prerequisite for the commercial application of CAI combustion. The effect of intake charge boosting, charge stratification and spark-assisted ignition on the operating range in CAI mode was reviewed. Stratified flame ignited (SFI) hybrid combustion is one form to achieve CAI combustion under the conditions of highly diluted mixture caused by the flame in the stratified mixture with the help of spark plug.
Technical Paper

Experimental Investigation of Combustion and Emission Characteristics of Stoichiometric Stratified Flame Ignited (SFI) Hybrid Combustion in a 4-Stroke PFI/DI Gasoline Engine

2019-04-02
2019-01-0960
Controlled Auto-Ignition (CAI), also known as Homogeneous Charge Compression Ignition (HCCI), can improve the fuel economy of gasoline engines and simultaneously achieve ultra-low NOx emissions. However, the difficulty in combustion phasing control and violent combustion at high loads limit the commercial application of CAI combustion. To overcome these problems, stratified mixture, which is rich around the central spark plug and lean around the cylinder wall, is formed through port fuel injection and direct injection of gasoline. In this condition, rich mixture is consumed by flame propagation after spark ignition, while the unburned lean mixture auto-ignites due to the increased in-cylinder temperature during flame propagation, i.e., stratified flame ignited (SFI) hybrid combustion.
Technical Paper

Dilution Boundary Expansion Mechanism of SI-CAI Hybrid Combustion Based on Micro Flame Ignition Strategy

2019-04-02
2019-01-0954
In decade years, Spark Ignition-Controlled Auto Ignition (SI-CAI) hybrid combustion, also called Spark Assisted Compression Ignition (SACI) has shown its high-efficiency and low emissions advantages. However, high dilution causes the problem of unstable initial ignition and flame propagation, which leads to high cyclic variation of heat release and IMEP. The instability of SI-CAI hybrid combustion limits its dilution degree and its ability to improve the thermal efficiency. In order to solve instability problems and expand the dilution boundary of hybrid combustion, micro flame ignition (MFI) strategy is applied in gasoline hybrid combustion engines. Small amount of Dimethyl Ether (DME) chosen as the ignition fuel is injected into cylinder to form micro flame kernel, which can stabilize the ignition combustion process.
Technical Paper

A Comparative Study on Knock Occurrence for Different Fuel Octane Number

2018-09-10
2018-01-1674
Combustion with knock is an abnormal phenomenon which constrains the engine performance, thermal efficiency and longevity. The advance timing of the ignition system requires it to be updated with respect to fuel octane number variation. The production series engines are calibrated by the manufacturer to run with a special fuel octane number. In the experiment, the engine was operated at different speeds, loads, spark advance timings and consumed commercial gasoline with research octane numbers (RON) 95, 97 and 100. A 1-dimensional validated engine combustion model was run in the GT-Power software to simulate the engine conditions required to define the knock envelope at the same engine operation conditions as experiment. The knock intensity investigation due to spark advance sweep shows that combustion with noise was started after a specific advance ignition timing and the audible knock occur by increasing the advance timing.
Technical Paper

Simulation of the Effect of Intake Pressure and Split Injection on Lean Combustion Characteristics of a Poppet-Valve Two-Stroke Direct Injection Gasoline Engine at High Loads

2018-09-10
2018-01-1723
Poppet-valve two-stroke gasoline engines can increase the specific power of their four-stroke counterparts with the same displacement and hence decrease fuel consumption. However, knock may occur at high loads. Therefore, the combustion with stratified lean mixture was proposed to decrease knock tendency and improve combustion stability in a poppet-valve two-stroke direct injection gasoline engine. The effect of intake pressure and split injection on fuel distribution, combustion and knock intensity in lean mixture conditions at high loads was simulated with a three-dimensional computational fluid dynamic software. Simulation results show that with the increase of intake pressure, the average fuel-air equivalent ratio in the cylinder decreases when the second injection ratio was fixed at 70% at a given amount of fuel in a cycle.
Technical Paper

Steady-State Experimental and Meanline Study of an Asymmetric Twin-Scroll Turbine at Full and Unequal and Partial Admission Conditions

2018-04-03
2018-01-0971
The use of twin-scroll turbocharger turbines has gained popularity in recent years. The main reason is its capability of isolating and preserving pulsating exhaust flow from engine cylinders of adjacent firing order, hence enabling more efficient pulse turbocharging. Asymmetrical twin-scroll turbines have been used to realize high pressure exhaust gas recirculation (EGR) using only one scroll while designing the other scroll for optimal scavenging. This research is based on a production asymmetrical turbocharger turbine designed for a heavy duty truck engine of Daimler AG. Even though there are number of studies on symmetrical twin entry scroll performance, a comprehensive modeling tool for asymmetrical twin-scroll turbines is yet to be found. This is particularly true for a meanline model, which is often used during the turbine preliminary design stage.
X