Refine Your Search

Topic

Author

Search Results

Technical Paper

Effects of the Engine Cooling System Design on Fuel Consumption - a Numerical Assessment

2021-03-26
2020-36-0182
One of the biggest challenges for mobility engineers today is the reduction of fuel consumption while keeping or even improving the automobiles propulsion system performance. A great part of the current powertrain components is developed to work at high engine loads and extreme environmental conditions, among which the engine cooling system, for example. As the overall vehicle efficiency depends directly on the thermal system design, it is important to make a careful investigation of the external ambient to develop this system on the best possible way, seeking to minimize the negative impacts at normal driving situations, which represents the most of the vehicle's life cycle. In this regard, the present paper reports a numerical study about the impacts of different cooling system hardware configurations on the fuel consumption of a turbocharged flex-fuel engine.
Technical Paper

Exhaust Emission Analysis of a Spark Ignition Engine Operating with Hydrogen Injection in a Pre-Combustion Chamber

2020-01-13
2019-36-0121
Due to the large negative impact of combustion gas emissions on air quality and the more stringent environmental legislation, research on internal combustion engines (ICE) are being developed to reduce emissions of pollutant gases to the atmosphere. One of the research fronts is the use of lean mixtures with the pre-chamber ignition system (PCIS). This system consists of a pre-chamber (PC) connected to the main chamber by one or more interconnecting holes. A spark plug initiates combustion of the mixture present in the pre-chamber, which is propagated as gas jet into the main chamber, igniting the lean mixture present therein. The gas jets have high thermal and kinetic energy, which promote faster combustion duration, making the system less prone to knock and with lower cyclic variability of the IMEP, enabling the lean limit extension. The pre-chamber system can be assisted with a supplementary liquid or gaseous fuel injection, enabling the charge stratification.
Technical Paper

Effects of operation temperature on exhaust emissions in a spark ignition system using pre-chamber stratified system

2020-01-13
2019-36-0130
Atmospheric pollution is the major public health issue in many cities around the world. Internal combustion engines (ICE) and industries are common sources of pollutants that aggravate this situation. Aiming to overcome this problem, increasingly restrictive legislation on combustion pollutant emissions has been formulated and new technologies are being developed to ensure compliance with such restrictions. In this scenario, the lean mixtures appear as a possible alternative, but also bring some inconveniences such as combustion instabilities. Pre-chamber ignition systems (PCIS) enable a more stable combustion process due to high kinetic, thermal and chemical energy of the gases from the pre-chamber (PC), which pass through nozzles and begin the combustion process of the air-fuel mixture contained in the main combustion chamber (MC). However, some challenges still have to be overcome in the development of these systems, one of the main ones being hydrocarbon (HC) emissions.
Technical Paper

The impacts of Diesel cycle engines on the operating costs of the Cessna 172 Skyhawk and JT-A aircraft.

2020-01-13
2019-36-0321
Diesel engines have been used on the aeronautical market for a long time. Despite this fact, there are few studies showing the potential cost savings of using this type of technology. In this way, the goal of this paper is to find out whether or not it is advantageous to use an Otto or Diesel cycle engine on general aviation light aircraft. It is well known that both of them have pros and cons, however, the possibility of using Jet A-1 (kerosene) as fuel gives the Diesel engine a clear advantage in a market like Brazil, where the price of the regular piston fuel (AvGas) keeps rising to astonishing values. Throughout this paper, a detailed study of the fixed and variable costs of two similar aircraft, both Cessnas 172 equipped with Otto and Diesel cycle engines is conducted, comparing fuel consumption, performance levels, and other factors.
Technical Paper

Combustion influence of a pre-chamber ignition system in a SI commercial engine

2018-09-03
2018-36-0115
Environmental policies and fuel costs have driven the development of new technologies for internal combustion engines. In this sense, the use of mixtures with small portions of fuel allows lower fuel consumption and pollutants emissions, emerging as a promising strategy. Despite the advantages, lean burn requires a larger energy source to provide satisfactory flame propagation speed and consequently a stable combustion. The use of pre-chamber ignition systems (PCIS) has been used in SI engines to assist the start of combustion of lean mixtures, in which a supplementary fuel system can stratify the amount of either liquid or gaseous fuels supplied to the pre-chamber. In this context, this paper aims to evaluate combustion characteristics of a commercial engine with the use of stratified PCIS operating with impoverished mixtures of ethanol-air in main-chamber and hydrogen assistance in pre-chamber.
Technical Paper

Combustion analysis in a SI engine with homogeneous and stratified pre-chamber system

2018-09-03
2018-36-0112
Extensive studies of pre-chamber ignition systems in internal combustion engines have proven its effectiveness in reduction of fuel consumption and improvement in several combustion parameters. Considering the different types of pre-chamber configurations, this paper aims to compare the combustion in a SI engine with both homogeneous and stratified pre-chamber ignition systems. To achieve this objective a system with the ability to control the hydrogen injection in the pre-chamber was built. This system was installed in a multi-cylinder Ford Sigma 1.6L engine and tested in a dynamometric room. Tests consisted in imposing a constant rotation and IMEP to test three conditions: standard spark ignition, pre-chamber ignition system without fuel injection (homogenous) and with hydrogen injection (stratified). It was possible to identify that with the use of pre-chamber ignition system there is a reduction in specific fuel consumption and in the combustion duration.
Technical Paper

Influence of Inflation Pressure of a Tire on Rolling Resistance and Fuel Consumption

2017-11-07
2017-36-0095
Resistive forces are a great source of fuel consumption in vehicles. In particular, rolling resistance represent the major resistance force at low speeds. It is highly influenced by the inflation pressure of the tire and vertical load over it. In the present work, a computer model is created with the objective of investigating the influence of tire inflation pressure on fuel consumption and rolling resistance force. Pressure is varied and parameters analyzed at different vehicle speeds for two different calculation methods. Results show significant decrease in fuel consumption and rolling resistance force as inflation pressure is augmented.
Technical Paper

Emissions of Hydrocarbons in a Torch Ignition Engines Operating with Homogeneous Charge

2017-11-07
2017-36-0394
The automobile industry and its growing commitment to the environment have collaborated in the development of technologies to reduce emissions of gaseous pollutants, including hydrocarbons. Recent works are aimed at the development of the torch ignition in internal combustion engines of the Otto cycle. A prototype characterized by a torch ignition system with fixed geometry of pre-chamber per cylinder, with a volume of 3.66 cm3 and a single nozzle with a diameter of 6.00 mm, fed with homogeneous mixture originating from Combustion chamber. The ignition and injection system was controlled by a reprogrammable electronic management system. The main results were an increase of around 10% in thermal efficiency and reductions of up to 91% in carbon monoxide emissions, but there was a considerable increase in total hydrocarbons (THC) emissions.
Technical Paper

Multi-Cylinder Torch Ignition System Operating With Homogeneous Charge - Performance and CO2

2017-11-07
2017-36-0250
Global trends in the development of spark ignition internal combustion engines lead to the adoption of solutions that reduce CO2 emissions and fuel consumption. Downsizing is a well-established path for this reduction, but it is necessary to use other technologies in order to achieve these ever more rigorous levels. A homogeneous torch ignition system is a viable alternative for reducing CO2 emissions with a combined reduction in specific fuel consumption and increased thermal efficiency. Thus a prototype adapted from an Otto engine with four cylinders is used for analysis. The performance and CO2 emission reference data were initially obtained with the baseline engine operating with a stoichiometric mixture. Then for the same conditions of BMEP, angular velocity and gradual lean of the mixture from the stoichiometry, the results of the adapted system are obtained.
Technical Paper

Combustion Analysis of a Current Vehicular Engine Operating in Lean Air-Fuel Conditions

2017-11-07
2017-36-0207
Environmental issues and energy security are critical concerns of the most countries. According researchers, excessive growth of land vehicles is one of the biggest contributors to global air pollution and oil reserves reduction. In this context, the use of lean burn technologies emerges as a promising strategy, allowing lower fuel consumption and pollutants emissions. Present work aims to analyze the behavior of a current commercial engine, gasoline fueled, varying the air-fuel ratio without the use of lean burn ignitions technologies. Analysis was performed through bench dynamometer tests, evaluating cylinder pressure, exhaust gas temperature, fuel conversion efficiency, cycle thermal efficiency, coefficient of variation in indicated mean effective pressure, apparent heat release rate, flame development angle and burn duration.
Technical Paper

Design and Combustion Characteristics of an Ethanol Homogeneous Charge Torch Ignition System for a Single-cylinder Optical Engine

2016-10-25
2016-36-0130
The trends in the development of spark ignition engines leads to the adoption of lean mixtures in the combustion chamber. Torch ignition systems have potential to reduce simultaneously the NOx and CO emissions, while keeping the fuel conversion efficiency at a high level. This study aims to design and analyze a torch ignition system running with ethanol on lean homogeneous charge, adapted to an Otto cycle single-cylinder engine with optical visualization. The main objective is to achieve combustion stability under lean burn operation and to expand the flammability limit for increasing engine efficiency by means of redesigning the ignition system adapting a pre-chamber to the main combustion chamber. Experiments were conducted at constant speed (1000 rpm) using ethanol (E100) as fuel, for a wide range of injection, ignition and mixture formation parameters. Specific fuel consumption and combustion stability were evaluated at each excess air ratio.
Technical Paper

Stratified Torch Ignition Engine: Combustion Analysis

2016-10-25
2016-36-0380
The Stratified Torch Ignition (STI) engine is capable of operating with lean mixture and low cyclic variability. These characteristic significantly decreases fuel consumption and emission levels. In the STI engine the combustion starts at a pre-combustion chamber where a stoichiometric mixture is ignited by an electrical spark. Pressure increase in the pre-combustion chamber push the combustion jet flames through a calibrated nozzle to be precisely targeted into the main chamber. These combustion jet flames endowed with high thermal and kinetic energy assures a fast and stable combustion of a lean mixture formed at the main chamber. A STI prototype were built and tested. The main combustion parameters were obtained from the in-cylinder pressure measured during the experiments. A combustion analysis is carried out to explain the significant improvement of the STI engine in regard to the baseline engine which was used as workhorse for the prototype engine construction.
Technical Paper

Stratified Torch Ignition Engine: Performance Analysis

2016-10-25
2016-36-0379
Global climate change and an increasing energy demand are driving the scientific community to further advance internal combustion engine technology. Invented by Sr. Henry Ricardo in 1918 the torch ignition system was able to significantly decrease engine’s fuel consumption and emission levels. Since the late 70s, soon after the Compound Vortex Controlled Combustion (CVCC) created by Honda, the torch ignition system R&D almost ceased due to the issues encountered by very complex and costly mechanic control systems that time. This work presents a stratified torch ignition prototype endowed with a sophisticated electronic control systems and components such as electro-injectors from direct injection systems placed on the pre-combustion chamber. The torch ignition prototype was tested and its performance are presented and compared with the baseline engine, which was used as a workhorse for the prototype engine construction.
Technical Paper

Simulation of Fuel Consumption and Emissions for Passenger Cars and Urban Buses in Real-World Driving Cycles

2016-10-25
2016-36-0443
Reducing environmental pollution by the transport sector has been influenced according to the increasingly restrictions imposed by regulatory standards. For this, legislation such as Euro (at global level) and Proconve (at local level) set new limits each new phase, usually stipulating reductions in the levels of greenhouse gas emissions. Compliance with these requirements is seen with the vehicle or engine ratings working through the conditions imposed by a standard test cycle. However, standard driving conditions often do not represent the real-world driving conditions, being influenced by relief, traffic lights and other peculiarities of each city or route. This paper aims to compare real-world driving cycles of urban bus and passenger car in the city of Santa Maria, in southern Brazil, with the conditions used for light gasoline vehicles and heavy diesel vehicles approval.
Technical Paper

Theoretical Reduction in NOx Emissions Using a Torch Ignition System Operating with Homogeneous Charge

2015-09-22
2015-36-0476
The pollutants emitted by fuel burn in an internal combustion engine are harmful to humankind health. One of undesirable pollutants are the nitrogen oxides (NOx), witch in the presence of sunlight is responsible by photochemical mist, forming products that irritates eyes, respiratory system and may damage plants. The present article aims to present the theoretical potential reduction in volumetric emissions of nitrogen oxides (NOx) in an internal combustion engine operating with the torch ignition system and homogeneous charge. Therefore, a calculation methodology based in measured pressures and determined temperatures were implemented to check the potential reduction in these pollutant emissions. The presented methodology used to estimate the NOx formation is based in NO formation model presented by [1].
Technical Paper

Development of a Multi-Disciplinary Optimization Framework for Nonconventional Aircraft Configurations in PACELAB APD

2015-09-15
2015-01-2564
1 Most traditional methods and equations for estimating the structural and nonstructural weights and aerodynamics used at the aircraft conceptual design phase are empirical relations developed for conventional tube-and-wing aircraft. In a computation-heavy design process, such as Multidisciplinary Design and Optimization (MDO) simplicity of calculation is paramount, and for conventional configurations the aforementioned approaches work well enough for conceptual design. But, for non-traditional designs such as strut-braced winged aircraft, empirical data is generally not available and the usual methods can no longer apply. One solution to this is a movement toward generalized physics-based methods that can apply equally well to conventional or non-traditional configurations.
Journal Article

Analytical Modelling of Diesel Powertrain Fuel System and Consumption Rate

2015-01-01
2014-01-9103
Vehicle analytical models are often favorable due to describing the physical phenomena associated with vehicle operation following from the principles of physics, with explainable mathematical trends and with extendable modeling to other types of vehicle. However, no experimentally validated analytical model has been developed as yet of diesel engine fuel consumption rate. The present paper demonstrates and validates for trucks and light commercial vehicles an analytical model of supercharged diesel engine fuel consumption rate. The study points out with 99.6% coefficient of determination that the average percentage of deviation of the steady speed-based simulated results from the corresponding field data is 3.7% for all Freeway cycles. The paper also shows with 98% coefficient of determination that the average percentage of deviation of the acceleration-based simulated results from the corresponding field data under negative acceleration is 0.12 %.
Technical Paper

Characterization of a Multi-Cylinder Torch Ignition System Operating with Homogenous Charge and Lean Mixture

2014-09-30
2014-36-0333
The present work aims to analyze a torch ignition system running on lean homogeneous charge, adapted to an Otto cycle multi-cylinder engine. The main objective is to maximize engine efficiency by means of redesigning the ignition system adapting a pre-chamber to the main combustion chamber. This new ignition system allows reducing its IMEP covariance for leaner mixture operation due to the increase of ignition energy availability during the kernel formation. The engine used in this research is a commercial sixteen valve, four cylinders in line with cubic capacity of 1600 cm3. The performance date of baseline engine operating stoichiometrically were used as a reference for the comparison with torch ignition engine output running from stoichiometric mixture to its leaner operational limit. The brake mean effective pressure was maintained constant in all test configurations in order to make possible to compare engines thermal efficiency.
Technical Paper

Numerical Analysis of Cooling Process of an Torch Ignition System

2014-09-30
2014-36-0330
The internal combustion engines require an efficient cooling system, the high temperatures generates at the time of combustion, reaching 2500 K peak burned gas. The materials used in the construction of the cylinder must operate within a maximum value, as well as the fluid film of lubricant oil. A bad dimensioned cooling system can lead to serious consequences such as loss of engine performance and/or efficiency, pre-ignition and increased exhaust emissions and may even lead to the destruction of the engine. In the torch ignition system overheating of the pre-chamber is even more critical and may lead to significant losses. Thus the torch ignition system requires an efficient cooling to prevent deterioration of the pre-chamber and consequently the engine caused by overheating. The solution proposed to resolve this inconvenience is the use of the cooling gallery in the cylinder head, for cooling the pre-chamber that is selected.
Technical Paper

Modeling of a Torch Ignition System Using One-Dimensional Model of Computational Simulation

2014-09-30
2014-36-0332
An torch ignition system with homogeneous charge is numerically analyzed using a one-dimensional computational model. The new ignition system is implemented in a four-cylinder engine, spark ignition, 1600 cm3, 16 valves. Parameters such as mass burn fraction profile and pressure vs crank angle are compared with experimental data obtained with the torch ignition system operating homogeneous charge with stoichiometric mixture. The computational model uses information such as the pre-chamber pressure as a function of crack angle, intake and exhaust pressure, volumetric efficiency, maps of injection and ignition, valve discharge and valve intake coefficient, lifting valve, laminar flame speed, among others parameters.
X