Refine Your Search

Topic

Author

Search Results

Technical Paper

Interconnected Roll Stability Control System for Semitrucks with Double Trailers

2023-04-11
2023-01-0906
This paper provides a simulation analysis of a novel interconnected roll stability control (RSC) system for improving the roll stability of semitrucks with double trailers. Different from conventional RSC systems where each trailer’s RSC module operates independently, the studied interconnected RSC system allows the two trailers’ RSC systems to communicate with each other. As such, if one trailer’s RSC activates, the other one is also activated to assist in further scrubbing speed or intervening sooner. Simulations are performed using a multi-body vehicle dynamics model that is developed in TruckSim® and coupled with the RSC model established in Simulink®. The dynamic model is validated using track test data. The simulation results for a ramp steer maneuver (RSM) and sine-with-dwell (SWD) maneuver indicate that the proposed RSC system reduces lateral acceleration and rollover index for both trailers, decreasing the likelihood of wheel tip-up and vehicle rollover.
Technical Paper

Evaluating Simulation Driver Model Performance Using Dynamometer Test Criteria

2022-03-29
2022-01-0530
The influence of driver modeling and drive cycle target speed trace modification on vehicle dynamics within energy consumption simulations is studied. EPA dynamometer speed error criteria and the SAE J2951 Drive Quality Evaluation for Chassis Dynamometer Testing standard are applied to simulation outputs as proposed components of simulation validation, providing guidelines for acceptable vehicle speed outputs and allowing comparison of simulation results to reported EPA dynamometer test statistics. The combined effect of driver model tuning and drive cycle interpolation methods is investigated for the UDDS, HwFET and US06 drive cycles, with EPA-specified linearly interpolated speed trace and a PI controller driver as a baseline result.
Technical Paper

Effects of the Engine Cooling System Design on Fuel Consumption - a Numerical Assessment

2021-03-26
2020-36-0182
One of the biggest challenges for mobility engineers today is the reduction of fuel consumption while keeping or even improving the automobiles propulsion system performance. A great part of the current powertrain components is developed to work at high engine loads and extreme environmental conditions, among which the engine cooling system, for example. As the overall vehicle efficiency depends directly on the thermal system design, it is important to make a careful investigation of the external ambient to develop this system on the best possible way, seeking to minimize the negative impacts at normal driving situations, which represents the most of the vehicle's life cycle. In this regard, the present paper reports a numerical study about the impacts of different cooling system hardware configurations on the fuel consumption of a turbocharged flex-fuel engine.
Technical Paper

The impacts of Diesel cycle engines on the operating costs of the Cessna 172 Skyhawk and JT-A aircraft.

2020-01-13
2019-36-0321
Diesel engines have been used on the aeronautical market for a long time. Despite this fact, there are few studies showing the potential cost savings of using this type of technology. In this way, the goal of this paper is to find out whether or not it is advantageous to use an Otto or Diesel cycle engine on general aviation light aircraft. It is well known that both of them have pros and cons, however, the possibility of using Jet A-1 (kerosene) as fuel gives the Diesel engine a clear advantage in a market like Brazil, where the price of the regular piston fuel (AvGas) keeps rising to astonishing values. Throughout this paper, a detailed study of the fixed and variable costs of two similar aircraft, both Cessnas 172 equipped with Otto and Diesel cycle engines is conducted, comparing fuel consumption, performance levels, and other factors.
Technical Paper

Has Electronic Stability Control Reduced Rollover Crashes?

2019-04-02
2019-01-1022
Vehicle rollovers are one of the more severe crash modes in the US - accounting for 32% of all passenger vehicle occupant fatalities annually. One design enhancement to help prevent rollovers is Electronic Stability Control (ESC) which can reduce loss of control and thus has great promise to enhance vehicle safety. The objectives of this research were (1) to estimate the effectiveness of ESC in reducing the number of rollover crashes and (2) to identify cases in which ESC did not prevent the rollover to potentially advance additional ESC development. All passenger vehicles and light trucks and vans that experienced a rollover from 2006 to 2015 in the National Automotive Sampling System Crashworthiness Database System (NASS/CDS) were analyzed. Each rollover was assigned a crash scenario based on the crash type, pre-crash maneuver, and pre-crash events.
Technical Paper

Combustion influence of a pre-chamber ignition system in a SI commercial engine

2018-09-03
2018-36-0115
Environmental policies and fuel costs have driven the development of new technologies for internal combustion engines. In this sense, the use of mixtures with small portions of fuel allows lower fuel consumption and pollutants emissions, emerging as a promising strategy. Despite the advantages, lean burn requires a larger energy source to provide satisfactory flame propagation speed and consequently a stable combustion. The use of pre-chamber ignition systems (PCIS) has been used in SI engines to assist the start of combustion of lean mixtures, in which a supplementary fuel system can stratify the amount of either liquid or gaseous fuels supplied to the pre-chamber. In this context, this paper aims to evaluate combustion characteristics of a commercial engine with the use of stratified PCIS operating with impoverished mixtures of ethanol-air in main-chamber and hydrogen assistance in pre-chamber.
Technical Paper

Combustion analysis in a SI engine with homogeneous and stratified pre-chamber system

2018-09-03
2018-36-0112
Extensive studies of pre-chamber ignition systems in internal combustion engines have proven its effectiveness in reduction of fuel consumption and improvement in several combustion parameters. Considering the different types of pre-chamber configurations, this paper aims to compare the combustion in a SI engine with both homogeneous and stratified pre-chamber ignition systems. To achieve this objective a system with the ability to control the hydrogen injection in the pre-chamber was built. This system was installed in a multi-cylinder Ford Sigma 1.6L engine and tested in a dynamometric room. Tests consisted in imposing a constant rotation and IMEP to test three conditions: standard spark ignition, pre-chamber ignition system without fuel injection (homogenous) and with hydrogen injection (stratified). It was possible to identify that with the use of pre-chamber ignition system there is a reduction in specific fuel consumption and in the combustion duration.
Technical Paper

Influence of Inflation Pressure of a Tire on Rolling Resistance and Fuel Consumption

2017-11-07
2017-36-0095
Resistive forces are a great source of fuel consumption in vehicles. In particular, rolling resistance represent the major resistance force at low speeds. It is highly influenced by the inflation pressure of the tire and vertical load over it. In the present work, a computer model is created with the objective of investigating the influence of tire inflation pressure on fuel consumption and rolling resistance force. Pressure is varied and parameters analyzed at different vehicle speeds for two different calculation methods. Results show significant decrease in fuel consumption and rolling resistance force as inflation pressure is augmented.
Technical Paper

Multi-Cylinder Torch Ignition System Operating With Homogeneous Charge - Performance and CO2

2017-11-07
2017-36-0250
Global trends in the development of spark ignition internal combustion engines lead to the adoption of solutions that reduce CO2 emissions and fuel consumption. Downsizing is a well-established path for this reduction, but it is necessary to use other technologies in order to achieve these ever more rigorous levels. A homogeneous torch ignition system is a viable alternative for reducing CO2 emissions with a combined reduction in specific fuel consumption and increased thermal efficiency. Thus a prototype adapted from an Otto engine with four cylinders is used for analysis. The performance and CO2 emission reference data were initially obtained with the baseline engine operating with a stoichiometric mixture. Then for the same conditions of BMEP, angular velocity and gradual lean of the mixture from the stoichiometry, the results of the adapted system are obtained.
Technical Paper

Combustion Analysis of a Current Vehicular Engine Operating in Lean Air-Fuel Conditions

2017-11-07
2017-36-0207
Environmental issues and energy security are critical concerns of the most countries. According researchers, excessive growth of land vehicles is one of the biggest contributors to global air pollution and oil reserves reduction. In this context, the use of lean burn technologies emerges as a promising strategy, allowing lower fuel consumption and pollutants emissions. Present work aims to analyze the behavior of a current commercial engine, gasoline fueled, varying the air-fuel ratio without the use of lean burn ignitions technologies. Analysis was performed through bench dynamometer tests, evaluating cylinder pressure, exhaust gas temperature, fuel conversion efficiency, cycle thermal efficiency, coefficient of variation in indicated mean effective pressure, apparent heat release rate, flame development angle and burn duration.
Technical Paper

Design and Combustion Characteristics of an Ethanol Homogeneous Charge Torch Ignition System for a Single-cylinder Optical Engine

2016-10-25
2016-36-0130
The trends in the development of spark ignition engines leads to the adoption of lean mixtures in the combustion chamber. Torch ignition systems have potential to reduce simultaneously the NOx and CO emissions, while keeping the fuel conversion efficiency at a high level. This study aims to design and analyze a torch ignition system running with ethanol on lean homogeneous charge, adapted to an Otto cycle single-cylinder engine with optical visualization. The main objective is to achieve combustion stability under lean burn operation and to expand the flammability limit for increasing engine efficiency by means of redesigning the ignition system adapting a pre-chamber to the main combustion chamber. Experiments were conducted at constant speed (1000 rpm) using ethanol (E100) as fuel, for a wide range of injection, ignition and mixture formation parameters. Specific fuel consumption and combustion stability were evaluated at each excess air ratio.
Technical Paper

Stratified Torch Ignition Engine: Combustion Analysis

2016-10-25
2016-36-0380
The Stratified Torch Ignition (STI) engine is capable of operating with lean mixture and low cyclic variability. These characteristic significantly decreases fuel consumption and emission levels. In the STI engine the combustion starts at a pre-combustion chamber where a stoichiometric mixture is ignited by an electrical spark. Pressure increase in the pre-combustion chamber push the combustion jet flames through a calibrated nozzle to be precisely targeted into the main chamber. These combustion jet flames endowed with high thermal and kinetic energy assures a fast and stable combustion of a lean mixture formed at the main chamber. A STI prototype were built and tested. The main combustion parameters were obtained from the in-cylinder pressure measured during the experiments. A combustion analysis is carried out to explain the significant improvement of the STI engine in regard to the baseline engine which was used as workhorse for the prototype engine construction.
Technical Paper

Stratified Torch Ignition Engine: Performance Analysis

2016-10-25
2016-36-0379
Global climate change and an increasing energy demand are driving the scientific community to further advance internal combustion engine technology. Invented by Sr. Henry Ricardo in 1918 the torch ignition system was able to significantly decrease engine’s fuel consumption and emission levels. Since the late 70s, soon after the Compound Vortex Controlled Combustion (CVCC) created by Honda, the torch ignition system R&D almost ceased due to the issues encountered by very complex and costly mechanic control systems that time. This work presents a stratified torch ignition prototype endowed with a sophisticated electronic control systems and components such as electro-injectors from direct injection systems placed on the pre-combustion chamber. The torch ignition prototype was tested and its performance are presented and compared with the baseline engine, which was used as a workhorse for the prototype engine construction.
Technical Paper

Simulation of Fuel Consumption and Emissions for Passenger Cars and Urban Buses in Real-World Driving Cycles

2016-10-25
2016-36-0443
Reducing environmental pollution by the transport sector has been influenced according to the increasingly restrictions imposed by regulatory standards. For this, legislation such as Euro (at global level) and Proconve (at local level) set new limits each new phase, usually stipulating reductions in the levels of greenhouse gas emissions. Compliance with these requirements is seen with the vehicle or engine ratings working through the conditions imposed by a standard test cycle. However, standard driving conditions often do not represent the real-world driving conditions, being influenced by relief, traffic lights and other peculiarities of each city or route. This paper aims to compare real-world driving cycles of urban bus and passenger car in the city of Santa Maria, in southern Brazil, with the conditions used for light gasoline vehicles and heavy diesel vehicles approval.
Technical Paper

A Simulation-Based Study on the Improvement of Semi-Truck Roll Stability in Roundabouts

2016-09-27
2016-01-8038
This paper studies the effect of different longitudinal load conditions, roundabout cross-sectional geometry, and different semi-truck pneumatic suspension systems on roll stability in roundabouts, which have become more and more popular in urban settings. Roundabouts are commonly designed in their size and form to accommodate articulated heavy vehicles (AHVs) by evaluating such affects as off-tracking. However, the effect of the roadway geometry in roundabouts on the roll dynamics of semi-tractors and trailers are equally important, along with their entry and exit configuration. , Because the effect of the roundabout on the dynamics of trucks is further removed from the immediate issues considered by roadway planner, at times they are not given as much consideration as other roadway design factors.
Journal Article

Investigating the Parameterization of Dugoff Tire Model Using Experimental Tire-Ice Data

2016-09-27
2016-01-8039
Tire modeling plays an important role in the development of an Active Vehicle Safety System. As part of a larger project that aims at developing an integrated chassis control system, this study investigates the performance of a 19” all-season tire on ice for a sport utility vehicle. A design of experiment has been formulated to quantify the effect of operational parameters, specifically: wheel slip, normal load, and inflation pressure on the tire tractive performance. The experimental work was conducted on the Terramechanics Rig in the Advanced Vehicle Dynamics Laboratory at Virginia Tech. The paper investigates an approach for the parameterization of the Dugoff tire model based on the experimental data collected. Compared to other models, this model is attractive in terms of its simplicity, low number of parameters, and easy implementation for real-time applications.
Technical Paper

Effects of Commercial Truck Configuration on Roll Stability in Roundabouts

2015-09-29
2015-01-2741
This paper presents the results of a study on the effect of truck configurations on the roll stability of commercial trucks in roundabouts that are commonly used in urban settings with increasing frequency. The special geometric layout of roundabouts can increase the risk of rollover in high-CG vehicles, even at low speeds. Relatively few in-depth studies have been conducted on rollover stability of commercial trucks in roundabouts. This study uses a commercially available software, TruckSim®, to perform simulations on four truck configurations, including a single-unit truck, a WB-67 semi-truck, the combination of a tractor with double 28-ft trailers, and the combination of a tractor with double 40-ft trailers. A single-lane and multilane roundabout are modeled, both with a truck apron. Three travel movements through the roundabouts are considered, including right turn, through-movement, and left turn.
Technical Paper

Development of a Multi-Disciplinary Optimization Framework for Nonconventional Aircraft Configurations in PACELAB APD

2015-09-15
2015-01-2564
1 Most traditional methods and equations for estimating the structural and nonstructural weights and aerodynamics used at the aircraft conceptual design phase are empirical relations developed for conventional tube-and-wing aircraft. In a computation-heavy design process, such as Multidisciplinary Design and Optimization (MDO) simplicity of calculation is paramount, and for conventional configurations the aforementioned approaches work well enough for conceptual design. But, for non-traditional designs such as strut-braced winged aircraft, empirical data is generally not available and the usual methods can no longer apply. One solution to this is a movement toward generalized physics-based methods that can apply equally well to conventional or non-traditional configurations.
Journal Article

A New Semi-Empirical Method for Estimating Tire Combined Slip Forces and Moments during Handling Maneuvers

2015-07-01
2015-01-9112
Modeling the tire forces and moments (F&M) generation, during combined slip maneuvers, which involves cornering and braking/driving at the same time, is essential for the predictive vehicle performance analysis. In this study, a new semi-empirical method is introduced to estimate the tire combined slip F&M characteristics based on flat belt testing machine measurement data. This model is intended to be used in the virtual tire design optimization process. Therefore, it should include high accuracy, ease of parameterization, and fast computational time. Regression is used to convert measured F&M into pure slip multi-dimensional interpolant functions modified by weighting functions. Accurate combined slip F&M predictions are created by modifying pure slip F&M with empirically determined shape functions. Transient effects are reproduced using standard relaxation length equations. The model calculates F&M at the center of the contact patch.
Journal Article

Assessment of Ride Comfort and Braking Performance Using Energy-Harvesting Shock Absorber

2015-04-14
2015-01-0649
Conventional viscous shock absorbers, in parallel with suspension springs, passively dissipate the excitation energy from road irregularity into heat waste, to reduce the transferred vibration which causes the discomfort of passengers. Energy-harvesting shock absorbers, which have the potential of conversion of kinetic energy into electric power, have been proposed as semi-active suspension to achieve better balance between the energy consumption and suspension performance. Because of the high energy density of the rotary shock absorber, a rotational energy-harvesting shock absorber with mechanical motion rectifier (MMR) is used in this paper. This paper presents the assessment of vehicle dynamic performance with the proposed energy-harvesting shock absorber in braking process. Moreover, a PI controller is proposed to attenuate the negative effect due to the pitch motion.
X