Refine Your Search

Topic

Search Results

Technical Paper

Interconnected Roll Stability Control System for Semitrucks with Double Trailers

2023-04-11
2023-01-0906
This paper provides a simulation analysis of a novel interconnected roll stability control (RSC) system for improving the roll stability of semitrucks with double trailers. Different from conventional RSC systems where each trailer’s RSC module operates independently, the studied interconnected RSC system allows the two trailers’ RSC systems to communicate with each other. As such, if one trailer’s RSC activates, the other one is also activated to assist in further scrubbing speed or intervening sooner. Simulations are performed using a multi-body vehicle dynamics model that is developed in TruckSim® and coupled with the RSC model established in Simulink®. The dynamic model is validated using track test data. The simulation results for a ramp steer maneuver (RSM) and sine-with-dwell (SWD) maneuver indicate that the proposed RSC system reduces lateral acceleration and rollover index for both trailers, decreasing the likelihood of wheel tip-up and vehicle rollover.
Technical Paper

Modification of the Internal Flows of Thermal Propulsion Systems Using Local Aerodynamic Inserts

2020-09-15
2020-01-2039
Modern thermal propulsion systems (TPS) as part of hybrid powertrains are becoming increasingly complex. They have an increased number of components in comparison to traditionally powered vehicles leading to increased demand in packaging requirements. Many of the components in these systems relate to achieving efficiency gains, weight saving and pollutant reduction. This includes turbochargers and diesel or gasoline particulate filters for example and these are known to be very sensitive to inlet boundary conditions. When overcoming packaging requirements, sub-optimal flow distributions throughout the TPS can easily occur. Moreover, the individual components are often designed in isolation assuming relatively flat and artificially quiescent inlet flow conditions in comparison to those they are actually presented with. Thus, some of the efficiency benefits are lost through reduced component aerodynamic efficiency.
Technical Paper

Optimizing Seat Belt and Airbag Designs for Rear Seat Occupant Protection in Frontal Crashes

2017-11-13
2016-32-0041
Recent field data have shown that the occupant protection in vehicle rear seats failed to keep pace with advances in the front seats likely due to the lack of advanced safety technologies. The objective of this study was to optimize advanced restraint systems for protecting rear seat occupants with a range of body sizes under different frontal crash pulses. Three series of sled tests (baseline tests, advanced restraint trial tests, and final tests), MADYMO model validations against a subset of the sled tests, and design optimizations using the validated models were conducted to investigate rear seat occupant protection with 4 Anthropomorphic Test Devices (ATDs) and 2 crash pulses.
Technical Paper

Optimizing Seat Belt and Airbag Designs for Rear Seat Occupant Protection in Frontal Crashes

2017-11-13
2017-22-0004
Recent field data have shown that the occupant protection in vehicle rear seats failed to keep pace with advances in the front seats likely due to the lack of advanced safety technologies. The objective of this study was to optimize advanced restraint systems for protecting rear seat occupants with a range of body sizes under different frontal crash pulses. Three series of sled tests (baseline tests, advanced restraint trial tests, and final tests), MADYMO model validations against a subset of the sled tests, and design optimizations using the validated models were conducted to investigate rear seat occupant protection with 4 Anthropomorphic Test Devices (ATDs) and 2 crash pulses.
Technical Paper

Influence of Inflation Pressure of a Tire on Rolling Resistance and Fuel Consumption

2017-11-07
2017-36-0095
Resistive forces are a great source of fuel consumption in vehicles. In particular, rolling resistance represent the major resistance force at low speeds. It is highly influenced by the inflation pressure of the tire and vertical load over it. In the present work, a computer model is created with the objective of investigating the influence of tire inflation pressure on fuel consumption and rolling resistance force. Pressure is varied and parameters analyzed at different vehicle speeds for two different calculation methods. Results show significant decrease in fuel consumption and rolling resistance force as inflation pressure is augmented.
Technical Paper

Simulation of Fuel Consumption and Emissions for Passenger Cars and Urban Buses in Real-World Driving Cycles

2016-10-25
2016-36-0443
Reducing environmental pollution by the transport sector has been influenced according to the increasingly restrictions imposed by regulatory standards. For this, legislation such as Euro (at global level) and Proconve (at local level) set new limits each new phase, usually stipulating reductions in the levels of greenhouse gas emissions. Compliance with these requirements is seen with the vehicle or engine ratings working through the conditions imposed by a standard test cycle. However, standard driving conditions often do not represent the real-world driving conditions, being influenced by relief, traffic lights and other peculiarities of each city or route. This paper aims to compare real-world driving cycles of urban bus and passenger car in the city of Santa Maria, in southern Brazil, with the conditions used for light gasoline vehicles and heavy diesel vehicles approval.
Technical Paper

A Simulation-Based Study on the Improvement of Semi-Truck Roll Stability in Roundabouts

2016-09-27
2016-01-8038
This paper studies the effect of different longitudinal load conditions, roundabout cross-sectional geometry, and different semi-truck pneumatic suspension systems on roll stability in roundabouts, which have become more and more popular in urban settings. Roundabouts are commonly designed in their size and form to accommodate articulated heavy vehicles (AHVs) by evaluating such affects as off-tracking. However, the effect of the roadway geometry in roundabouts on the roll dynamics of semi-tractors and trailers are equally important, along with their entry and exit configuration. , Because the effect of the roundabout on the dynamics of trucks is further removed from the immediate issues considered by roadway planner, at times they are not given as much consideration as other roadway design factors.
Technical Paper

Integration of Active and Passive Safety Technologies - A Method to Study and Estimate Field Capability

2015-11-09
2015-22-0010
The objective of this study is to develop a method that uses a combination of field data analysis, naturalistic driving data analysis, and computational simulations to explore the potential injury reduction capabilities of integrating passive and active safety systems in frontal impact conditions. For the purposes of this study, the active safety system is actually a driver assist (DA) feature that has the potential to reduce delta-V prior to a crash, in frontal or other crash scenarios. A field data analysis was first conducted to estimate the delta-V distribution change based on an assumption of 20% crash avoidance resulting from a pre-crash braking DA feature. Analysis of changes in driver head location during 470 hard braking events in a naturalistic driving study found that drivers’ head positions were mostly in the center position before the braking onset, while the percentage of time drivers leaning forward or backward increased significantly after the braking onset.
Technical Paper

Development and Validation of an Older Occupant Finite Element Model of a Mid-Sized Male for Investigation of Age-related Injury Risk

2015-11-09
2015-22-0014
The aging population is a growing concern as the increased fragility and frailty of the elderly results in an elevated incidence of injury as well as an increased risk of mortality and morbidity. To assess elderly injury risk, age-specific computational models can be developed to directly calculate biomechanical metrics for injury. The first objective was to develop an older occupant Global Human Body Models Consortium (GHBMC) average male model (M50) representative of a 65 year old (YO) and to perform regional validation tests to investigate predicted fractures and injury severity with age. Development of the GHBMC M50 65 YO model involved implementing geometric, cortical thickness, and material property changes with age. Regional validation tests included a chest impact, a lateral impact, a shoulder impact, a thoracoabdominal impact, an abdominal bar impact, a pelvic impact, and a lateral sled test.
Technical Paper

Effects of Commercial Truck Configuration on Roll Stability in Roundabouts

2015-09-29
2015-01-2741
This paper presents the results of a study on the effect of truck configurations on the roll stability of commercial trucks in roundabouts that are commonly used in urban settings with increasing frequency. The special geometric layout of roundabouts can increase the risk of rollover in high-CG vehicles, even at low speeds. Relatively few in-depth studies have been conducted on rollover stability of commercial trucks in roundabouts. This study uses a commercially available software, TruckSim®, to perform simulations on four truck configurations, including a single-unit truck, a WB-67 semi-truck, the combination of a tractor with double 28-ft trailers, and the combination of a tractor with double 40-ft trailers. A single-lane and multilane roundabout are modeled, both with a truck apron. Three travel movements through the roundabouts are considered, including right turn, through-movement, and left turn.
Technical Paper

Numerical Analysis of Cooling Process of an Torch Ignition System

2014-09-30
2014-36-0330
The internal combustion engines require an efficient cooling system, the high temperatures generates at the time of combustion, reaching 2500 K peak burned gas. The materials used in the construction of the cylinder must operate within a maximum value, as well as the fluid film of lubricant oil. A bad dimensioned cooling system can lead to serious consequences such as loss of engine performance and/or efficiency, pre-ignition and increased exhaust emissions and may even lead to the destruction of the engine. In the torch ignition system overheating of the pre-chamber is even more critical and may lead to significant losses. Thus the torch ignition system requires an efficient cooling to prevent deterioration of the pre-chamber and consequently the engine caused by overheating. The solution proposed to resolve this inconvenience is the use of the cooling gallery in the cylinder head, for cooling the pre-chamber that is selected.
Technical Paper

Modeling of a Torch Ignition System Using One-Dimensional Model of Computational Simulation

2014-09-30
2014-36-0332
An torch ignition system with homogeneous charge is numerically analyzed using a one-dimensional computational model. The new ignition system is implemented in a four-cylinder engine, spark ignition, 1600 cm3, 16 valves. Parameters such as mass burn fraction profile and pressure vs crank angle are compared with experimental data obtained with the torch ignition system operating homogeneous charge with stoichiometric mixture. The computational model uses information such as the pre-chamber pressure as a function of crack angle, intake and exhaust pressure, volumetric efficiency, maps of injection and ignition, valve discharge and valve intake coefficient, lifting valve, laminar flame speed, among others parameters.
Technical Paper

Dynamic Analysis of Spark Ignition Engines

2012-10-02
2012-36-0138
To attend the new tendencies of the automotive market, new technologies must be used throughout the engine conception. One way of improving the project is to use computational numerical simulation, predicting engine behavior in a wide range of situations. This paper presents a methodology to estimate the engine characteristic parameters necessary to numerical simulation. Morse test was used to determine friction power, mean effective pressure friction and friction torque, considering the engine behavior during cylinder ignition cut-off. In this test all the results were compatible with manufacturer data, which validates the methodology. To define the moment of inertia, it's also proposed a fuel cut methodology, associated with the Morse test, because the torque values measured by dynamometer after the fuel cut did not correspond to the real value. Thus, plausible values of engine moment of inertia, very close to values obtained by software, were obtained.
Technical Paper

Longitudinal Performance of a BAJA SAE Vehicle

2010-10-06
2010-36-0315
Driven by the necessity to reduce costs and improve products quality the automotive industry replaced the design method known as "trial and error" by those grounded on mathematical and physical theory. In this context, a longitudinal performance test was made by BAJA SAE UFMG team, in order to acquire vehicular performance data that will be used to validate computer models. The methodology consists of sensors and data acquisition system research, validation, fixation and installation in the vehicle, test and process of acquired data. From these steps, correlated data were acquired from magnitudes such as angular velocity in transmission shafts, global longitudinal acceleration and velocity, travel of break and throttle pedals and pressure inside of master cylinder. These results developed the knowledge about vehicular dynamic allowing the improvement of futures prototypes.
Journal Article

Mitigating Heavy Truck Rear-End Crashes with the use of Rear-Lighting Countermeasures

2010-10-05
2010-01-2023
In 2006, there were approximately 23,500 rear-end crashes involving heavy trucks (i.e., gross vehicle weight greater than 4,536 kg). The Enhanced Rear Signaling (ERS) for Heavy Trucks project was developed by the Federal Motor Carrier Safety Administration (FMCSA) to investigate methods to reduce or mitigate those crashes where a heavy truck has been struck from behind by another vehicle. Visual warnings have been shown to be effective, assuming the following driver is looking directly at the warning display or has his/her eyes drawn to it. A visual warning can be placed where it is needed and it can be designed so that its meaning is nearly unambiguous. FMCSA contracted with the Virginia Tech Transportation Institute (VTTI) to investigate potential benefit of additional rear warning-light configurations as rear-end crash countermeasures for heavy trucks.
Technical Paper

Characterization of Knee-Thigh-Hip Response in Frontal Impacts Using Biomechanical Testing and Computational Simulations

2008-11-03
2008-22-0017
Development and validation of crash test dummies and computational models that are capable of predicting the risk of injury to all parts of the knee-thigh-hip (KTH) complex in frontal impact requires knowledge of the force transmitted from the knee to the hip under knee impact loading. To provide this information, the knee impact responses of whole and segmented cadavers were measured over a wide range of knee loading conditions. These data were used to develop and help validate a computational model, which was used to estimate force transmitted to the cadaver hip. Approximately 250 tests were conducted using five unembalmed midsize male cadavers. In these tests, the knees were symmetrically impacted with a 255-kg padded impactor using three combinations of knee-impactor padding and velocity that spanned the range of knee loading conditions produced in FMVSS 208 and NCAP tests. Each subject was tested in four conditions.
Technical Paper

Cervical Spine Geometry in the Automotive Seated Posture: Variations with Age, Stature, and Gender

2004-11-01
2004-22-0014
In the mid 1970s, UMTRI investigated the biomechanical properties of the head and neck using 180 “normal” adult subjects selected to fill eighteen subject groups based on age (young, mid-aged, older), gender, and stature (short, medium, and tall by gender). Lateral-view radiographs of the subjects’ cervical spines and heads were taken with the subjects seated in a simulated automotive neutral posture, as well as with their necks in full-voluntary flexion and full-voluntary extension. Although the cervical spine and lower head geometry were previously measured manually and documented, new technologies have enabled computer digitization of the scanned x-ray images and a more comprehensive and detailed analysis of the variation in cervical spine and lower head geometry with subject age, stature, and gender. After scanning the radiographic images, 108 skeletal landmarks on the cervical vertebrae and 10 head landmarks were digitized.
Technical Paper

A Centrifuge Concept for Measuring the Rollover Threshold of Light-Duty Vehicles

2002-05-07
2002-01-1603
Various means for measuring a vehicle's roll stability performance are considered in terms of the pertinence of their test conditions to the rollover crash record, the practicality and quality of the measurement, and their ability to span the performance range of the population of light-duty vehicles. Classical static measures as well as the so-called “maneuver-type” tests that have been under extensive study by the U.S. Dept. of Transportation are specifically addressed. In light of limitations facing the existing methods, the concept of a centrifuge test device is introduced and discussed. The apparatus is comprised of a relatively large machine that mounts a full-sized vehicle tangent to the rotation of a radial arm which revolves at a controlled angular rate. The minimum steady speed of rotation that induces a rollover response in the mounted vehicle corresponds to the static rollover threshold, in units of lateral (or centripetal) acceleration.
Technical Paper

Analysis of upper extremity response under side air bag loading

2001-06-04
2001-06-0016
Computer simulations, dummy experiments with a new enhanced upper extremity, and small female cadaver experiments were used to analyze the small female upper extremity response under side air bag loading. After establishing the initial position, three tests were performed with the 5th percentile female hybrid III dummy, and six experiments with small female cadaver subjects. A new 5th percentile female enhanced upper extremity was developed for the dummy experiments that included a two-axis wrist load cell in addition to the existing six-axis load cells in both the forearm and humerus. Forearm pronation was also included in the new dummy upper extremity to increase the biofidelity of the interaction with the handgrip. Instrumentation for both the cadaver and dummy tests included accelerometers and magnetohydrodynamic angular rate sensors on the forearm, humerus, upper and lower spine.
Technical Paper

Modeling Assumptions for Realistic Multibody Simulations of the Yaw and Roll Behavior of Heavy Trucks

1996-02-01
960173
This paper summarizes how modem computer simulation methods have been used to develop a “fleet” of heavy truck simulation programs called TruckSim Kinematical and dynamical modeling assumptions appropriate for simulating the general three-dimensional behavior of heavy trucks are described to the extent needed to construct such a model in a multibody program such as the AUTOS1M symbolic code generator Alternative kinematical assumptions were tested and compared to determine their influence on the simulation efficiency and accuracy As part of the validation, simulation results for the new programs were compared with results obtained with an older program that was developed by hand
X