Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Prediction of Eigenfrequencies and Eigenmodes of Seatbelt Retractors in the Vehicle Environment, Supporting an Acoustically Optimal Retractor Integration by CAE

2018-06-13
2018-01-1543
From an acoustical point of view, the integration of seatbelt retractors in a vehicle is a real challenge that has to be met early in the vehicle development process. The buzz and rattle noise of seat belt retractors is a weak yet disturbing interior noise. Street irregularities excite the wheels and this excitation is transferred via the car body to the mounting location of the retractor. Ultimately, the inertia sensor of the locking mechanism is also excited. This excitation can be amplified by structural resonances and generate a characteristic impact noise. The objective of this paper is to describe a simulation method for an early development phase that predicts the noise-relevant low frequency local modes and consequently the contact of the retractor with the mounting panel of the car body via the finite element method.
Technical Paper

Vehicle Worthy Rapid Prototype Communication and Control System

1999-04-14
1999-01-1879
This paper describes a strategy that allows a vehicle builder to quickly design and build an electrical communication and control system infrastructure. The power, ground, and communication infrastructure connects readily available operator interfaces and other electromechanical devices together with high level controllers to provide a complete vehicle electrical system.
Technical Paper

Automotive Pressure Sensors: Evolution of a Micromachined Sensor Application

1997-11-17
973238
The automotive pressure sensor is one of the most widespread applications of a micromachined device, and has evolved into a relatively mature technology, expanding beyond its original use as an engine control sensor into other vehicle control and diagnostic systems. The need for flexibility in various applications, low cost, high volume manufacturing capability, and survivability in harsh environments has strongly influenced sensor signal conditioning, calibration, element design, and packaging. Many of the issues affecting the development and commercialization of micromachined automotive pressure sensors are also relevant to other emerging microfabricated devices. This paper shows how the commercial success of a product using microfabricated technology is highly dependent upon other core competencies, beyond just the capability to perform the micromachining operations necessary to create the sensing device.
X