Refine Your Search

Topic

Author

Search Results

Technical Paper

Wall Permeability Estimation in Automotive Particulate Filters

2023-08-28
2023-24-0110
Porous wall permeability is one of the most critical factors for the estimation of backpressure, a key performance indicator in automotive particulate filters. Current experimental and analytical filter models could be calibrated to predict the permeability of a specific filter. However, they fail to provide a reliable estimation for the dependence of the permeability on key parameters such as wall porosity and pore size. This study presents a novel methodology for experimentally determining the permeability of filter walls. The results from four substrates with different porosities and pore sizes are compared with several popular permeability estimation methods (experimental and analytical), and their validity for this application is assessed. It is shown that none of the assessed methods predict all permeability trends for all substrates, for cold or hot flow, indicating that other wall properties besides porosity and pore size are important.
Technical Paper

Freevalve: Control and Optimization of Fully Variable Valvetrain-Enabled Combustion Strategies for High Performance Engines

2022-08-30
2022-01-1066
With ever stricter legislative requirements for CO2 and other exhaust emissions, significant efforts by OEMs have launched a number of different technological strategies to meet these challenges such as Battery Electric Vehicles (BEVs). However, a multiple technology approach is needed to deliver a broad portfolio of products as battery costs and supply constraints are considerable concerns hindering mass uptake of BEVs. Therefore, further investment in Internal Combustion (IC) engine technologies to meet these targets are being considered, such as lean burn gasoline technologies alongside other high efficiency concepts such as dedicated hybrid engines. Hence, it becomes of sound reason to further embrace diversity and develop complementary technologies to assist in the transition to the next generation hybrid powertrain. One such approach is to provide increased valvetrain flexibility to afford new degrees of freedom in engine operating strategies.
Technical Paper

Brake Power Availability Led Optimisation of P0 versus P2 48V Hybrid Powertrain Architectures

2020-04-14
2020-01-0439
Through improving the 48V hybrid vehicle archetype, governmental emission targets could be more easily met without incurring the high costs associated with increasing levels of electrification. The braking energy recovery function of hybrid vehicles is recognised as an effective solution to reduce emissions and fuel consumption in the short to medium term. The aim of this study was to evaluate methods to maximise the braking energy recovery capability of the 48V hybrid electric vehicle over pre-selected drive cycles using appropriately sized electrified components. The strategy adopted was based upon optimising the battery chemistry type via specific power capability, so that overall brake power is equal to the maximum battery charging power in a typical medium-sized passenger car under typical driving. This will maximise the regenerative braking energy whilst providing a larger torque assistance for a lower battery capacity.
Technical Paper

Mass Benefit Analysis of 4-Stroke and Wankel Range Extenders in an Electric Vehicle over a Defined Drive Cycle with Respect to Vehicle Range and Fuel Consumption

2019-04-02
2019-01-1282
The gradual push towards electric vehicles (EV) as a primary mode of transport has resulted in an increased focus on electric and hybrid powertrain research. One answer to the consumers’ concern over EV range is the implementation of small combustion engines as generators to supplement the energy stored in the vehicle battery. Since these range extender generators have the opportunity to run in a small operating window, some engine types that have historically struggled in an automotive setting have the potential to be competitive. The relative merits of two different engine options for range extended electric vehicles are simulated in vehicle across the WLTP drive cycle. The baseline electric vehicle chosen was the BMW i3 owing to its availability as an EV with and without a range extender gasoline engine.
Technical Paper

Potential Improvements in Turbofan’s Performance by Electric Power Transfer

2018-10-30
2018-01-1962
Bleeding in engines is essential to mitigate the unmatched air massflow between low and High Pressure (HP) compressors at low speed settings, thus avoiding unstable operation due to surge and phenomena. However, by emerging the More Electric Aircraft (MEA) the engine is equipped with electrical machines on both high and Low Pressure (LP) spools which enables transfer of power electrically from one spool to another and hence provides the opportunity to operate engine core components closer to their optimum design point at off-design conditions. At lower power setting of the engine, HPC speed can be increased by taking power from LP shaft and feeding it to HP shaft which can lead to the removal of the bleeding system which in turn reduces weight and fuel consumption and help to overcome engine instability issues. Fuel consumption can be decreased by decreasing inconsistent thrust with the aircraft mission for flight and ground idle settings.
Technical Paper

Transient Stability Analysis of DC Solid State Power Controller (SSPC) for More Electric Aircraft

2018-10-30
2018-01-1927
The solid state power controller (SSPC) is one of the most important power electronic components of the aircraft electrical power distribution (EPS) systems. This paper presents an architecture of the DC SSPC and provides the mitigation techniques for transient voltage overshoot during its turn-off. The high source side inductance carries breaking current (9xnominal current) just before turnoff and induces large voltage transient across the semiconductor devices. Therefore, the stored inductive energy needs to be dissipated in order to prevent semiconductor switches from over-voltage/thermal breakdown. Three different transient voltage suppression (TVS) devices to reduce voltage stress across switches are included in the paper for detail study. The comprehensive comparison of the TVS devices is presented. In addition, the thermal impact of the TVS devices on the semiconductor switches is also analyzed.
Technical Paper

Integrated Design of Motor Drives Using Random Heuristic Optimization for Aerospace Applications

2017-09-19
2017-01-2030
High power density for aerospace motor drives is a key factor in the successful realization of the More Electric Aircraft (MEA) concept. An integrated system design approach offers optimization opportunities, which could lead to further improvements in power density. However this requires multi-disciplinary modelling and the handling of a complex optimization problem that is discrete and nonlinear in nature. This paper proposes a multi-level approach towards applying random heuristic optimization to the integrated motor design problem. Integrated optimizations are performed independently and sequentially at different levels assigned according to the 4-level modelling paradigm for electric systems. This paper also details a motor drive sizing procedure, which poses as the optimization problem to solve here. Finally, results comparing the proposed multi-level approach with a more traditional single-level approach is presented for a 2.5 kW actuator motor drive design.
Technical Paper

An Enhanced Secondary Control Approach for Voltage Restoration in the DC Distribution System

2016-09-20
2016-01-1985
The paper will deal with the problem of establishing a desirable power sharing in multi-feed electric power system for future more-electric aircraft (MEA) platforms. The MEA is one of the major trends in modern aerospace engineering aiming for reduction of the overall aircraft weight, operation cost and environmental impact. Electrical systems are employed to replace existing hydraulic, pneumatic and mechanical loads. Hence the onboard installed electrical power increases significantly and this results in challenges in the design of electrical power systems (EPS). One of the key paradigms for future MEA EPS architectures assumes high-voltage dc distribution with multiple sources, possibly of different physical nature, feeding the same bus(es). In our study we investigate control approaches to guarantee that the total electric load is shared between the sources in a desirable manner. A novel communication channel based secondary control method is proposed in this paper.
Journal Article

Control Design for PMM-Based Generator Fed by Active Front-End Rectifier in More-Electric Aircraft

2016-09-20
2016-01-1987
The future aircraft electrical power system is expected to be more efficient, safer, simpler in servicing and easier in maintenance. As a result, many existing hydraulic and pneumatic power driven systems are being replaced by their electrical counterparts. This trend is known as a move towards the More-Electric Aircraft (MEA). As a result, a large number of new electrical loads have been introduced in order to power many primary functions including actuation, de-icing, cabin air-conditioning, and engine start. Therefore electric power generation systems have a key role in supporting this technological trend. Advances in modern power electronics allow the concept of starter/generator (S/G) which enables electrical engine start and power generation using the same electrical machine. This results in substantial improvements in power density and reduced overall weight.
Technical Paper

A Study on Dynamic Torque Cancellation in a Range Extender Unit

2016-04-05
2016-01-1231
A range extended electric vehicle (REEV) has the benefit of zero pipeline emission for most of the daily commute driving using the full electric mode while maintaining the capability for a long-range trip without the requirement of stop-and-charge. This capability is provided by the on-board auxiliary power unit (APU) which is used to maintain the battery state of charge at a minimum limit. Due to the limited APU package size, a small capacity engine with low-cylindercount is normally used which inherently exposes more severe torque pulsation, that arises from a low firing frequency. By using vector control, it is feasible to vary the generator in-cycle torque to counteract the engine torque oscillation dynamically. This allows for a smoother operation of the APU with the possibility of reducing the size of the engine flywheel. In this paper, a series of motor/generator control torque patterns were applied with the aim of cancelling the engine in-cycle torque pulses.
Technical Paper

Impact of Electric Loads on Engine Shaft Dynamics within More Electric Aircraft

2015-09-15
2015-01-2409
This paper considers the electromechanical interconnection between the electrical power system of the More Electric Aircraft (MEA) and the shaft connecting the engine to the generator. In order to investigate the coupling between these two systems the effect of an electric load impact on the mechanical system of the MEA will be analysed. In the MEA, many functions traditionally powered by pneumatic, hydraulic and mechanical systems will be replaced by the electrical systems. Thus the electrical power rating will be considerably higher than that of a traditional aircraft. With the increase of electrical power, the impact of electrical load on the mechanical system, especially the engine shaft, will become significant. This paper focuses on the study of the interaction between the electrical and mechanical system.
Technical Paper

Functional Modeling of 18-Pulse Autotransformer Rectifier Units for Aircraft Applications

2015-09-15
2015-01-2412
This paper aims to develop a general functional model of multi-pulse Auto-Transformer Rectifier Units (ATRUs) for More-Electric Aircraft (MEA) applications. The ATRU is seen as the most reliable way readily to be applied in the MEA. Interestingly, there is no model of ATRUs suitable for unbalanced or faulty conditions at the moment. This paper is aimed to fill this gap and develop functional models suitable for both balanced and unbalanced conditions. Using the fact that the DC voltage and current are strongly related to the voltage and current vectors at the AC terminals of ATRUs, a generic functional model has been developed for both symmetric and asymmetric ATRUs. The developed functional models are validated through simulation and experiment. The efficiency of the developed model is also demonstrated by comparing with corresponding detailed switching models. The developed functional model shows significant improvement of simulation efficiency, especially under balanced conditions.
Technical Paper

Thermal Electric Analysis of Bond Wires Used in Automotive Electronic Modules

2015-04-14
2015-01-0195
Bond wires are used in automotive electronic modules to carry current from external harness to components where flexibility under thermal cyclic loading is very essential between PCB (Printed Circuit Board) and connectors. They are very thin wires (few μm) made up of gold, aluminum or copper and have to undergo mechanical reliability to withstand extreme mechanical and thermal loads during different vehicle operation scenarios. Thermal reliability of bond wire is to make sure that it can withstand prescribed electric current under given boundary conditions without fusing thereby retaining electronic module's functionality. While carrying current, bond wire by virtue of its nature resists electric current flow and generates heat also called as joule heating. Joule heating is proportional to current flow and electrical resistance and if not handled properly can lead to thermal run away conditions.
Technical Paper

A New Turboexpansion Concept in a Twin-Charged Engine System

2014-10-13
2014-01-2596
Engines equipped with pressure charging systems are more prone to knock partly due the increased intake temperature. Meanwhile, turbocharged engines when operating at high engine speeds and loads cannot fully utilize the exhaust energy as the wastegate is opened to prevent overboost. The turboexpansion concept thus is conceived to reduce the intake temperature by utilizing some otherwise unexploited exhaust energy. This concept can be applied to any turbocharged engines equipped with both a compressor and a turbine-like expander on the intake loop. The turbocharging system is designed to achieve maximum utilization of the exhaust energy, from which the intake charge is over-boosted. After the intercooler, the turbine-like expander expands the over-compressed intake charge to the required plenum pressure and reduces its temperature whilst recovering some energy through the connection to the crankshaft.
Technical Paper

CFD Investigation on the Influence of In-Cylinder Mixture Distribution from Multiple Pilot Injections on Cold Idle Behaviour of a Light Duty Diesel Engine

2014-10-13
2014-01-2708
Cold idle operation of a modern design light duty diesel engine and the effect of multiple pilot injections on stability were investigated. The investigation was initially carried out experimentally at 1000rpm and at −20°C. Benefits of mixture preparation were initially explored by a heat release analysis. Kiva 3v was then used to model the effect of multiple pilots on in-cylinder mixture distribution. A 60° sector of mesh was used taking advantage of rotational symmetry. The combustion system and injector arrangements mimic the HPCR diesel engine used in the experimental investigation. The CFD analysis covers evolutions from intake valve closing to start of combustion. The number of injections was varied from 1 to 4, but the total fuel injected was kept constant at 17mm3/stroke. Start of main injection timing was fixed at 7.5°BTDC.
Technical Paper

Stability Study of DC Electric Power System with Paralleled Generators for More-Electric Aircraft

2014-09-16
2014-01-2114
Many More-Electric Aircraft (MEA) Electric Power System (EPS) architecture paradigms are being studied in order to provide the on-board electrical loads with high-quality supply and to ensure safe operation. EPS with dc distribution appears to be more promising due to higher efficiency, higher reliability, easier integration and lower overall weight. Another advantage of dc systems is the ease of sources paralleling, together with the optimization of load power sharing, this can lead to further EPS weight reduction. The DC bus can be fed by multiple sources such as generators, batteries and other energy storage devices. Many loads in MEA EPS are tightly controlled by power electronic converters and often behave as constant power loads (CPL). These are known as main contributors to the degradation of EPS stability margins. Therefore, stability study is one of the key topics in the assessment of potential EPS architecture candidates.
Technical Paper

Behaviours of a GDI Gasoline Engine during Start

2014-04-01
2014-01-1374
Vehicle start-stop systems are becoming increasingly prevalent on internal combustion engine (ICE) because of the capability to reduce emissions and fuel consumption in a cost effective manner. Thus, the ICE undergoes far more starting events, therefore, the behaviour of ICE during start-up becomes critical. In order to simulate and optimise the engine start, Model in the Loop (MiL) simulation approach was selected. A proceduralised cranking test has been carried out on a 2.0-liter turbocharged, gasoline direct injection (GDI) engine to collect data. The engine behaviour in the first 15 seconds was split into eight different phases and studied. The engine controller and the combustion system were highly transient and interactive. Thus, a controller model that can set accurate boundary conditions is needed. The relevant control functions of throttle opening and spark timing have been implemented in Matlab/Simulink to simulate the behaviours of the controller.
Journal Article

Emerging Technologies for Use in Aerospace Bonded Assemblies

2013-09-17
2013-01-2134
Several new technologies are now emerging to improve adhesive supply and formulation along with surface treatments that have the potential to offer significant improvements to both surface energy and cleanliness [3]. Additionally, the miniaturisation of laboratory techniques into portable equipment offers potential for online surface energy and chemical analysis measurement for use as quality control measures in a production environment. An overview of newly available technology is given here with several devices studied in further detail. Technologies assessed further in this paper are; portable surface contact angle measurement, ambient pressure plasma cleaning, portable FTIR measurement and adhesive mixing equipment. A number of potential applications are outlined for each device based on the operational technique. The practical aspects of implementation and the perceived technology readiness levels for operation, implementation and results are also given.
Technical Paper

Paradox of Miniaturization Trend Versus Hybrid Electrical Vehicle Requirements

2012-10-02
2012-36-0262
In recent years, a number of key influences are contributing to accelerate technological innovation in the automotive industrial sector. Concerns about renewable energy resource, fossil-fuels crises and higher gasoline prices, global warming awareness and environmental impacts, scarcity of minerals/metals and electronics demands rising are some of the major challenges for vehicle automakers and their suppliers. The interest in alternative fuel vehicles, especially hybrid-electrical vehicles (HEV) or renewable energy power concepts for road vehicles has become intensified and represents a significant area of research and development in order to meet nowadays global demands. However because of Hybrid Vehicles unique Power Supply System the electrical/electronic architecture (E/E) is sophisticated, requesting more robust sealing and a particular wiring harness components, such as connector, terminals and cables.
Technical Paper

Energy Harvesting as Strategy for Reducing Vehicles Emissions

2012-10-02
2012-36-0114
In vehicular mobility context, it is extremely important for the environmental sustainability that the available energy will be used as efficiently as possible, both in the use of internal combustion engines (ICE) as powertrain, as well in the application of Hybrid and Electric Vehicle Motors (HEV/EV). In this comparison, ICE has a lower efficiency when compared to electric motors, wasting much of the potential energy of the fuel in form of heat and noise. On the other hand, the electric vehicles face limitation in autonomy and recharge time, demanding for a more efficient use of energy stored in batteries. This study aims to present emerging technologies for reuse of energy within the automotive context, originally known as “Energy Harvesting” and “Renewable Energies”.
X