Refine Your Search

Topic

Author

Search Results

Technical Paper

Measurement of Sub-23 nm Particulate Emissions from GDI Engines: A Comparison of Processing Methods

2021-04-06
2021-01-0626
Engine research has increasingly focused on emission of sub 23 nm particulates in recent years. Likewise, current legislative efforts are being made for particulate number (PN) emission limits to include this previously omitted size range. In Europe, PN measurement equipment and procedures for regulatory purposes are defined by the particle measurement programme (PMP). Latest regulation drafts for sub 23 nm measurements specify counting efficiencies with a 65% cut-off size at 10 nm (d65) and a minimum of 90% above 15 nm (d90). Even though alternative instruments, such as differential mobility spectrometers (DMS), are widely used in laboratory environments, the interpretation of their sub 23 nm measurements has not yet been widely discussed. For this study, particulate emissions of a 1.0L gasoline direct injection (GDI) engine have been measured with a DMS system for low to medium speeds with two load steps.
Technical Paper

High Frequency Vibration Transmission Analysis on Agricultural Tractor by Using Combined Dynamical Energy Analysis and Transfer Path Analysis Approach

2020-01-24
2019-32-0527
Dynamical Energy Analysis (DEA) has recently been introduced as a mesh-based high frequency method modelling structure borne sound for complex built-up structures. Using DEA, the structure-borne sound of an assembled agricultural tractor was calculated and good agreement between measurement and DEA calculations has been shown. However, it is still difficult to model a solid structure as currently DEA is based on wave-transmission calculations through plates and plate-to-plate junctions. Additionally, it is often difficult to generate accurate FE meshes of assembled complex structures because of welds, bolts, and rubber brushes between components. In this paper, we propose a novel method to generate DEA elements based on measurement data in order to model solid parts of a complex structures. The method of Advanced Transfer Path Analysis (ATPA) is employed to extract energy-transmission characteristics of a structure.
Journal Article

Assessing the Impact of FAME and Diesel Fuel Composition on Stability and Vehicle Filter Blocking

2019-01-15
2019-01-0049
In recent years, there has been an impetus in the automotive industry to develop newer diesel injection systems with a view to reducing fuel consumption and emissions. This development has led to hardware capable of higher pressures, typically up to 2500 bar. An increase in pressure will result in a corresponding increase in fuel temperature after compression with studies showing changes in fuel temperatures of up to 150 °C in 1000-2500 bar injection systems. Until recently, the addition of Fatty Acid Methyl Esters, FAME, to diesel had been blamed for a number of fuel system durability issues such as injector deposits and fuel filter blocking. Despite a growing acceptance within the automotive and petrochemical industries that FAME is not solely to blame for diesel instability, there is a lack of published literature in the area, with many studies still focusing on FAME oxidation to explain deposit formation and hardware durability.
Technical Paper

Potential Improvements in Turbofan’s Performance by Electric Power Transfer

2018-10-30
2018-01-1962
Bleeding in engines is essential to mitigate the unmatched air massflow between low and High Pressure (HP) compressors at low speed settings, thus avoiding unstable operation due to surge and phenomena. However, by emerging the More Electric Aircraft (MEA) the engine is equipped with electrical machines on both high and Low Pressure (LP) spools which enables transfer of power electrically from one spool to another and hence provides the opportunity to operate engine core components closer to their optimum design point at off-design conditions. At lower power setting of the engine, HPC speed can be increased by taking power from LP shaft and feeding it to HP shaft which can lead to the removal of the bleeding system which in turn reduces weight and fuel consumption and help to overcome engine instability issues. Fuel consumption can be decreased by decreasing inconsistent thrust with the aircraft mission for flight and ground idle settings.
Technical Paper

An Integrated System’s Approach Towards Aero Engine Subsystems Design

2016-09-20
2016-01-2020
This paper proposes an integrated system’s approach towards design of aero-engine subsystems - seals, bearing chamber, generator and power system. In a conventional design approach, the design of the overall system is typically broken-down into subsystems. Therefore, the focus is not on the mutual interaction between different components or subsystems, resulting in a lack of characterization of the overall system performance at the design phase. A systems design approach adopts a much broader outlook, focusing on the overall optimization of the system performance. This paper is divided into two parts. The first part presents an integrated approach for modelling the electrical, mechanical and hydraulic subsystems of aero engines, in order to analyze the fluid dynamics interactions and reduce the transversal shaft vibrations. For this, an in-line starter/generator and an air-riding seal are studied.
Technical Paper

Position Estimation and Autonomous Control of a Quad Vehicle

2016-09-14
2016-01-1878
The major contribution of this paper is the general description of a complete integrating procedure of autonomous vehicle system. Using Robot Operating System (ROS) as the framework, process from senor integration to path planning and path tracking were performed. Based on an off-road All-Terrain Vehicle, an Extended Kalman filter based autonomous control strategy was developed on the ROS. Both the position estimation and autonomous control were performed on the ROS platform. For the position estimation phase, sensory measurements from GPS, IMU and wheel odometry were acquired and processed on ROS. In accordance with the ROS architecture, separate packages were developed for each sensor to gather and publish corresponding measurements. Furthermore, Extended Kalman filtering was performed to fuse all sensory measurements to achieve an optimizing accuracy.
Technical Paper

A Modified Oil Lubrication System with Flow Control to Reduce Crankshaft Bearing Friction in a Litre 4 Cylinder Diesel Engine

2016-04-05
2016-01-1045
The oil distribution system of an automotive light duty engine typically has an oil pump mechanically driven through the front-endancillaries-drive or directly off the crankshaft. Delivery pressure is regulated by a relief valve to provide an oil gallery pressure of typically 3 to 4 bar absolute at fully-warm engine running conditions. Electrification of the oil pump drive is one way to decouple pump delivery from engine speed, but this does not alter the flow distribution between parts of the engine requiring lubrication. Here, the behaviour and benefits of a system with an electrically driven, fixed displacement pump and a distributor providing control over flow to crankshaft main bearings and big end bearings is examined. The aim has been to demonstrate that by controlling flow to these bearings, without changing flow to other parts of the engine, significant reductions in engine friction can be achieved.
Technical Paper

Comparative Study of Power Sharing Strategies for the DC Electrical Power System in the MEA

2015-09-15
2015-01-2410
In this paper, the load sharing principles in dc-distribution electric power systems (EPS) for future more-electric aircraft (MEA) are investigated. The study is conducted using a potential MEA EPS architecture with multiple sources feeding into the main dc bus. Corresponding reduced-order EPS models are established. The influence of the cable impedance on the load sharing accuracy is analyzed and sharing error is quantized in mathematical equations. In addition, source/load impedance of the droop-controlled system has been derived leading to the discussion of the stability issues in multi-feed dc EPS under different droop control strategies. The influence of load sharing ratio on the EPS stability margins has been investigated. The theoretical findings were supported by time-domain simulations in Matlab/SimPower.
Technical Paper

Review of Turbocharger Mapping and 1D Modelling Inaccuracies with Specific Focus on Two-Stag Systems

2015-09-06
2015-24-2523
The adoption of two stage serial turbochargers in combination with internal combustion engines can improve the overall efficiency of powertrain systems. In conjunction with the increase of engine volumetric efficiency, two stage boosting technologies are capable of improving torque and pedal response of small displacement engines. In two stage sequential systems, high pressure (HP) and low pressure (LP) turbochargers are packaged in a way that the exhaust gases access the LP turbine after exiting the HP turbine. On the induction side, fresh air is compressed sequentially by LP and HP compressors. The former is able to deliver elevated pressure ratios, but it is not able to highly compressor low flow rates of air. The latter turbo-machine can increase charge pressure at lower mass air flow and be by-passed at high rates of air flow.
Journal Article

Flow-Induced Whistle in the Joint of Thermal Expansion Valve and Suction Tube in Automotive Refrigerant System

2015-06-15
2015-01-2275
In the thermal expansion valve (TXV) refrigerant system, transient high-pitched whistle around 6.18 kHz is often perceived following air-conditioning (A/C) compressor engagements when driving at higher vehicle speed or during vehicle acceleration, especially when system equipped with the high-efficiency compressor or variable displacement compressor. The objectives of this paper are to conduct the noise source identification, investigate the key factors affecting the whistle excitation, and understand the mechanism of the whistle generation. The mechanism is hypothesized that the whistle is generated from the flow/acoustic excitation of the turbulent flow past the shallow cavity, reinforced by the acoustic/structural coupling between the tube structural and the transverse acoustic modes, and then transmitted to evaporator. To verify the mechanism, the transverse acoustic mode frequency is calculated and it is coincided to the one from measurement.
Journal Article

Effect of Aerodynamically Induced Pre-Swirl on Centrifugal Compressor Acoustics and Performance

2015-06-15
2015-01-2307
The effect of aerodynamically induced pre-swirl on the acoustic and performance characteristics of an automotive centrifugal compressor is studied experimentally on a steady-flow turbocharger facility. Accompanying flow separation, broadband noise is generated as the flow rate of the compressor is reduced and the incidence angle of the flow relative to the leading edge of the inducer blades increases. By incorporating an air jet upstream of the inducer, a tangential (swirl) component of velocity is added to the incoming flow, which improves the incidence angle particularly at low to mid-flow rates. Experimental data for a configuration with a swirl jet is then compared to a baseline with no swirl. The induced jet is shown to improve the surge line over the baseline configuration at all rotational speeds examined, while restricting the maximum flow rate. At high flow rates, the swirl jet increases the compressor inlet noise levels over a wide frequency range.
Journal Article

Flow-Induced Gurgling Noise in Automotive Refrigerant Systems

2015-06-15
2015-01-2276
Refrigerant flow-induced gurgling noise is perceived in automotive refrigerant systems. In this study, the condition of the gurgling generation is investigated at the vehicle level and the fundamental root cause is identified as the two-phase refrigerant flow entering the TXV for system equipped with variable displacement compressors. By conducting literature reviews, the acoustic characteristics of the flow patterns and the parameters affecting the flow regimes in horizontal and vertical tubes are summarized. Then the gurgling mechanism is explained as the intermittent flow is developed at the evaporator inlet. In the end, the improved and feasible design for avoiding the intermittent flow (slug, plug or churn flow) or minimizing its formation is proposed and verified in refrigerant subsystem (RSS) level. Finally, the guidelines for the attenuation and suppression of the gurgle are provided.
Technical Paper

CAE Simulation of Engine Tonal Noise Generated by Gerotor Oil Pumps

2015-06-15
2015-01-2245
A CAE method has been developed to address engine tonal noise and whine due to the excitation from a gerotor oil pump. The method involves a multidisciplinary approach including CFD, frequency-response structural analysis and acoustic analysis. The results from the application of the method applied to a couple of pumps with different designs are discussed. Engine tonal noise improvement through reduction in the excitation source from the pump and also stiffening the excitation path from the pump to the engine are studied. The effect of component modal alignment with oil pump orders is addressed as well.
Technical Paper

Study of Stick-Slip Friction between Plunging Driveline

2015-06-15
2015-01-2171
Driveline plunge mechanism dynamics has a significant contribution to the driver's perceivable transient NVH error states and to the transmission shift quality. As it accounts for the pitch or roll movements of the front powerplant and rear drive unit, the plunging joints exhibit resisting force in the fore-aft direction under various driveline torque levels. This paper tackles the difficult task of quantifying the coefficient of static friction and the coefficient of dynamic friction in a simple to use metric as it performs in the vehicle. The comparison of the dynamic friction to the static friction allows for the detection of the occurrence of stick-slip in the slip mechanism; which enables for immediate determination of the performance of the design parameters such as spline geometry, mating parts fit and finish, and lubrication. It also provides a simple format to compare a variety of designs available to the automotive design engineer.
Technical Paper

Multiphase Flow Simulations of Poppet Valve Noise and Vibration

2015-04-14
2015-01-0666
A deeper understanding of the complex phenomenology associated with the multiphase flow-induced noise and vibration in a dynamic valve is of critical importance to the automotive industry. To this purpose, a two-dimensional axisymmetric numerical model has been developed to simulate the complex processes that are responsible for the noise and vibration in a poppet valve. More specifically, an Eulerian multiphase flow model, a dynamic mesh and a user-defined function are utilized to facilitate the modeling of this complicated two-phase fluid-structure interaction problem. For a two-phase flow through the valve, our simulations showed that the deformation and breakup of gas bubbles in the gap between the poppet and the valve seat generates a vibration that arises primarily from the force imbalance between the spring and the two-phase fluid flow induced forces on the poppet.
Technical Paper

More Leaders and Fewer Initiatives: Key Ideas for the Future of Engineering

2015-04-14
2015-01-0411
Panel Discussions held at the SAE World Congress in both 2013 and 2014 observed that a shortage of good quality engineering talent formed a chronic and major challenge. (“Good quality” refers to applicants that would be shortlisted for interview.) While doubts have been expressed in some quarters, the shortage is confirmed by automotive sector employers and the Panel's view was that it was symptomatic of a range of issues, all of which have some bearing on the future of the profession. Initiatives to improve recruitment and retention have had varying degrees of success. Efforts need to be intensified in primary schools where negative perceptions develop and deepen. Schemes like AWIM that operate on a large scale and are designed to supplement school curricula should operate at an international level. Universities represent the entry point into the engineering profession and their role in the recruitment process as well as education and training is crucial.
Technical Paper

A New Turboexpansion Concept in a Twin-Charged Engine System

2014-10-13
2014-01-2596
Engines equipped with pressure charging systems are more prone to knock partly due the increased intake temperature. Meanwhile, turbocharged engines when operating at high engine speeds and loads cannot fully utilize the exhaust energy as the wastegate is opened to prevent overboost. The turboexpansion concept thus is conceived to reduce the intake temperature by utilizing some otherwise unexploited exhaust energy. This concept can be applied to any turbocharged engines equipped with both a compressor and a turbine-like expander on the intake loop. The turbocharging system is designed to achieve maximum utilization of the exhaust energy, from which the intake charge is over-boosted. After the intercooler, the turbine-like expander expands the over-compressed intake charge to the required plenum pressure and reduces its temperature whilst recovering some energy through the connection to the crankshaft.
Technical Paper

Empirical Lumped-mass Approach to Modelling Heat Transfer in Automotive Turbochargers

2014-10-13
2014-01-2559
When evaluating the performance of new boosting hardware, it is a challenge to isolate the heat transfer effects inherent within measured turbine and compressor efficiencies. This work documents the construction of a lumped mass turbocharger model in the MatLab Simulink environment capable of predicting turbine and compressor metal and gas outlet temperatures based on measured or simulated inlet conditions. A production turbocharger from a representative 2.2L common rail diesel engine was instrumented to enable accurate gas and wall temperature measurements to be recorded under a variety of engine operating conditions. Initially steady-state testing was undertaken across the engine speed and load range in order that empirical Reynolds-Nusselt heat transfer relationships could be derived and incorporated into the model. Steady state model predictions were validated against further experimental data.
Journal Article

Implementing Determinate Assembly for the Leading Edge Sub-Assembly of Aircraft Wing Manufacture

2014-09-16
2014-01-2252
The replacement for the current single-aisle aircraft will need to be manufactured at a rate significantly higher that of current production. One way that production rate can be increased is by reducing the processing time for assembly operations. This paper presents research that was applied to the build philosophy of the leading edge of a laminar flow European wing demonstrator. The paper describes the implementation of determinate assembly for the rib to bracket assembly interface. By optimising the diametric and the positional tolerances of the holes on the two bracket types and ribs, determinate assembly was successfully implemented. The bracket to rib interface is now secured with no tooling or post processes other than inserting and tightening the fastener. This will reduce the tooling costs and eliminates the need for local drilling, de-burring and re-assembly of the bracket to rib interface, reducing the cycle time of the operation.
Technical Paper

Stability Study of DC Electric Power System with Paralleled Generators for More-Electric Aircraft

2014-09-16
2014-01-2114
Many More-Electric Aircraft (MEA) Electric Power System (EPS) architecture paradigms are being studied in order to provide the on-board electrical loads with high-quality supply and to ensure safe operation. EPS with dc distribution appears to be more promising due to higher efficiency, higher reliability, easier integration and lower overall weight. Another advantage of dc systems is the ease of sources paralleling, together with the optimization of load power sharing, this can lead to further EPS weight reduction. The DC bus can be fed by multiple sources such as generators, batteries and other energy storage devices. Many loads in MEA EPS are tightly controlled by power electronic converters and often behave as constant power loads (CPL). These are known as main contributors to the degradation of EPS stability margins. Therefore, stability study is one of the key topics in the assessment of potential EPS architecture candidates.
X