Refine Your Search

Topic

Search Results

Technical Paper

Freevalve: Control and Optimization of Fully Variable Valvetrain-Enabled Combustion Strategies for High Performance Engines

2022-08-30
2022-01-1066
With ever stricter legislative requirements for CO2 and other exhaust emissions, significant efforts by OEMs have launched a number of different technological strategies to meet these challenges such as Battery Electric Vehicles (BEVs). However, a multiple technology approach is needed to deliver a broad portfolio of products as battery costs and supply constraints are considerable concerns hindering mass uptake of BEVs. Therefore, further investment in Internal Combustion (IC) engine technologies to meet these targets are being considered, such as lean burn gasoline technologies alongside other high efficiency concepts such as dedicated hybrid engines. Hence, it becomes of sound reason to further embrace diversity and develop complementary technologies to assist in the transition to the next generation hybrid powertrain. One such approach is to provide increased valvetrain flexibility to afford new degrees of freedom in engine operating strategies.
Technical Paper

The Effect of Temperature on the Molecular Compositions of External and Internal Gasoline Direct Injection Deposits

2021-09-21
2021-01-1188
The increased severity and prevalence of insoluble deposits formed on fuel injectors in gasoline direct injection (GDI) engines precipitates negative environmental, economic and healthcare impacts. A necessary step in mitigating deposits is to unravel the molecular compositions of these complex layered materials. But very little molecular data has been acquired. Mass spectrometry shows promise but most techniques require the use of solvents, making them unsuited for analyzing insoluble deposits. Here, we apply the high mass-resolving power and in-situ analysis capabilities of 3D OrbitrapTM secondary ion mass spectrometry (3D OrbiSIMS) to characterize deposits formed on the external tip and internal needle from a GDI injector. This is the first application of the technique to study internal GDI deposits. Polycyclic aromatic hydrocarbons (PAHs) are present up to higher maximum masses in the external deposit.
Technical Paper

Sub-23 nm Particulate Emissions from a Highly Boosted GDI Engine

2019-09-09
2019-24-0153
The European Particle Measurement Program (PMP) defines the current standard for measurement of Particle Number (PN) emissions from vehicles in Europe. This specifies a 50% count efficiency (D50) at 23 nm and a 90% count efficiency (D90) at 41 nm. Particulate emissions from Gasoline Direct Injection (GDI) engines have been widely studied, but usually only in the context of PMP or similar sampling procedures. There is increasing interest in the smallest particles - i.e. smaller than 23 nm - which can be emitted from vehicles. The literature suggest that by moving D50 to 10 nm, PN emissions from GDI engines might increase by between 35 and 50% but there remains a lot of uncertainty.
Journal Article

Assessing the Impact of FAME and Diesel Fuel Composition on Stability and Vehicle Filter Blocking

2019-01-15
2019-01-0049
In recent years, there has been an impetus in the automotive industry to develop newer diesel injection systems with a view to reducing fuel consumption and emissions. This development has led to hardware capable of higher pressures, typically up to 2500 bar. An increase in pressure will result in a corresponding increase in fuel temperature after compression with studies showing changes in fuel temperatures of up to 150 °C in 1000-2500 bar injection systems. Until recently, the addition of Fatty Acid Methyl Esters, FAME, to diesel had been blamed for a number of fuel system durability issues such as injector deposits and fuel filter blocking. Despite a growing acceptance within the automotive and petrochemical industries that FAME is not solely to blame for diesel instability, there is a lack of published literature in the area, with many studies still focusing on FAME oxidation to explain deposit formation and hardware durability.
Technical Paper

Potential Improvements in Turbofan’s Performance by Electric Power Transfer

2018-10-30
2018-01-1962
Bleeding in engines is essential to mitigate the unmatched air massflow between low and High Pressure (HP) compressors at low speed settings, thus avoiding unstable operation due to surge and phenomena. However, by emerging the More Electric Aircraft (MEA) the engine is equipped with electrical machines on both high and Low Pressure (LP) spools which enables transfer of power electrically from one spool to another and hence provides the opportunity to operate engine core components closer to their optimum design point at off-design conditions. At lower power setting of the engine, HPC speed can be increased by taking power from LP shaft and feeding it to HP shaft which can lead to the removal of the bleeding system which in turn reduces weight and fuel consumption and help to overcome engine instability issues. Fuel consumption can be decreased by decreasing inconsistent thrust with the aircraft mission for flight and ground idle settings.
Technical Paper

Design of a Reconfigurable Assembly Cell for Multiple Aerostructures

2016-09-27
2016-01-2105
This paper presents novel development of a reconfigurable assembly cell which assembles multiple aerostructure products. Most aerostructure assembly systems are designed to produce one variant only. For multiple variants, each assembly typically has a dedicated assembly cell, despite most assemblies requiring a process of drilling and fastening to similar tolerances. Assembly systems that produce more than one variant do exist but have long changeover or involve extensive retrofitting. Quick assembly of multiple products using one assembly system offers significant cost savings from reductions in capital expenditure and lead time. Recent trends advocate Reconfigurable Assembly Systems (RAS) as a solution; designed to have exactly the functionality necessary to produce a group of similar components. A state-of-the-art review finds significant benefits in deploying RAS for a group of aerostructures variants.
Journal Article

Technology Review of Thermal Forming Techniques for use in Composite Component Manufacture

2015-09-15
2015-01-2610
There is a growing demand for composites to be utilised in the production of large-scale components within the aerospace industry. In particular the demand to increase production rates indicates that traditional manual methods are no longer sufficient, and automated solutions must be sought. This typically leads to automated forming processes where there are a limited number of effective options. The need for forming typically arises from the inability of layup methods to produce complex geometries of structural components. This paper reviews the current state of the art in automated forming processes, their limitations and variables that affect performance in the production of large scale components. In particular the paper will focus on the application of force and heat within secondary forming processes. It will then review the effects of these variables against the structure of the required composite component and identify viability of the technology.
Journal Article

Octane Appetite: The Relevance of a Lower Limit to the MON Specification in a Downsized, Highly Boosted DISI Engine

2014-10-13
2014-01-2718
Market demand for high performance gasoline vehicles and increasingly strict government emissions regulations are driving the development of highly downsized, boosted direct injection engines. The in-cylinder temperatures and pressures of these emerging technologies tend to no longer adhere to the test conditions defining the RON and MON octane rating scales. This divergence between fuel knock rating methods and fuel performance in modern engines has previously led to the development of an engine and operating condition dependent scaling factor, K, which allows for extrapolation of RON and MON values. Downsized, boosted DISI engines have been generally shown to have negative K-values when knock limited, indicating a preference for fuels of higher sensitivity and challenging the relevance of a lower limit to the MON specification.
Technical Paper

A New Turboexpansion Concept in a Twin-Charged Engine System

2014-10-13
2014-01-2596
Engines equipped with pressure charging systems are more prone to knock partly due the increased intake temperature. Meanwhile, turbocharged engines when operating at high engine speeds and loads cannot fully utilize the exhaust energy as the wastegate is opened to prevent overboost. The turboexpansion concept thus is conceived to reduce the intake temperature by utilizing some otherwise unexploited exhaust energy. This concept can be applied to any turbocharged engines equipped with both a compressor and a turbine-like expander on the intake loop. The turbocharging system is designed to achieve maximum utilization of the exhaust energy, from which the intake charge is over-boosted. After the intercooler, the turbine-like expander expands the over-compressed intake charge to the required plenum pressure and reduces its temperature whilst recovering some energy through the connection to the crankshaft.
Journal Article

Axiomatic Design of a Reconfigurable Assembly System for Primary Wing Structures

2014-09-16
2014-01-2249
Aerospace assembly systems comprise a vast array of interrelated elements interacting in a myriad of ways. Consequently, aerospace assembly system design is a deeply complex process that requires a multi-disciplined team of engineers. Recent trends to improve manufacturing agility suggest reconfigurability as a solution to the increasing demand for improved flexibility, time-to-market and overall reduction in non-recurring costs. Yet, adding reconfigurability to assembly systems further increases operational complexity and design complexity. Despite the increase in complexity for reconfigurable assembly, few formal methodologies or frameworks exist specifically to support the design of Reconfigurable Assembly Systems (RAS). This paper presents a novel reconfigurable assembly system design framework (RASDF) that can be applied to wing structure assembly as well as many other RAS design problems.
Technical Paper

Design and Modeling of a 45kW, Switched Reluctance Starter-Generator for a Regional Jet Application

2014-09-16
2014-01-2158
A 45kW, switched reluctance type, starter-generator, having a 1:4 constant power speed range has been designed as a possible candidate for a regional jet application. In the first section of this paper, a review of the major starter-generator topologies considered for the aerospace application is provided, highlighting the advantages of choosing the Switched reluctance topology for such a safety critical application. Following this, the required torque speed characteristic of the machine, along with the imposed physical constraints, in terms of cooling and outer dimensions, are also detailed. Section III provides a description of the Electromagnetic design, and challenges encountered in meeting both the low speed, peak torque node, at 8000rpm, and the high speed, high power node, at 32000rpm. The induced mechanical stresses in the rotor at such high speeds have also been evaluated and used as a material selection criterion for such a design as presented in section III.
Journal Article

Discrete Flow Mapping - A Mesh Based Simulation Tool for Mid-to-High Frequency Vibro-Acoustic Excitation of Complex Automotive Structures

2014-06-30
2014-01-2079
Modelling the vibro-acoustic properties of mechanical built-up structures is a challenging task, especially in the mid to high frequency regime, even with the computational resources available today. Standard modelling tools for complex vehicle parts include finite and boundary element methods (FEM and BEM), as well as Multi-Body Simulations (MBS). These methods are, however, robust only in the low frequency regime. In particular, FEM is not scalable to higher frequencies due to the prohibitive increase in model size. We have recently developed a new method called Discrete Flow Mapping (DFM), which extends existing high frequency methods, such as Statistical Energy Analysis or the so-called Dynamical Energy Analysis (DEA), to work on meshed structures. It provides for the first time detailed spatial information about the vibrational energy of a whole built-up structure of arbitrary complexity in this frequency range.
Technical Paper

Information on the Aromatic Structure of Internal Diesel Injector Deposits From Time of Flight Secondary Ion Mass Spectrometry (ToF-SIMS)

2014-04-01
2014-01-1387
The nature of internal diesel injector deposits (IDID) continues to be of importance to the industry, with field problems such as injector sticking, loss of power, increased emissions and fuel consumption being found. The deposits have their origins in the changes in emission regulations that have seen increasingly severe conditions experienced by fuels because of high temperatures and high pressures of modern common rail systems and the introduction of low sulphur fuels. Furthermore, the effect of these deposits is amplified by the tight engineering tolerances of the moving parts of such systems. The nature and thus understanding of such deposits is necessary to both minimising their formation and the development of effective diesel deposit control additives (DCA).
Journal Article

Emerging Technologies for Use in Aerospace Bonded Assemblies

2013-09-17
2013-01-2134
Several new technologies are now emerging to improve adhesive supply and formulation along with surface treatments that have the potential to offer significant improvements to both surface energy and cleanliness [3]. Additionally, the miniaturisation of laboratory techniques into portable equipment offers potential for online surface energy and chemical analysis measurement for use as quality control measures in a production environment. An overview of newly available technology is given here with several devices studied in further detail. Technologies assessed further in this paper are; portable surface contact angle measurement, ambient pressure plasma cleaning, portable FTIR measurement and adhesive mixing equipment. A number of potential applications are outlined for each device based on the operational technique. The practical aspects of implementation and the perceived technology readiness levels for operation, implementation and results are also given.
Technical Paper

Review of Reconfigurable Assembly Systems Technologies for Cost Effective Wing Structure Assembly

2013-09-17
2013-01-2336
Airbus commercial wings are assembled manually in dedicated steel structures. The lead time to design, manufacture and commission these fixtures is often in excess of 24 months. Due to the nature of these fixtures, manufacturing is slow in responding to changes in demand. There is underused capacity in some areas and insufficient ramp-up speed where increased production rate is needed. Reconfigurable Manufacturing Systems and Reconfigurable Assembly Systems (RAS) provide an approach to system design that provides appropriate capacity when needed. The aim of the paper is to review RAS technologies that are suitable for cost-effective wing structure assembly and what knowledge gaps exist for a RAS to be achieved. The paper examines successful cases of RAS and reviews relevant system design approaches. Cost savings are acknowledged and tabularised where demonstrated in research. The research gaps to realising a RAS for wing assembly are identified and different approaches are considered.
Journal Article

Improvement of Planning and Tracking of Technology Maturity Development with Focus on Manufacturing Requirements

2013-09-17
2013-01-2261
This paper details the development of a user-friendly computerised tool created to evaluate the Manufacturing Readiness Levels (MRL) of an emerging technology. The main benefits achieved are to manage technology development planning and tracking, make visually clear and standardised analysis, and improve team communication. The new approach is applied to the Technology Readiness Levels (TRL), currently used by Airbus Research & Technology (R&T) UK. The main focus is on the improvement of the analysis criteria. The first phase of the study was to interpret the manufacturing criteria used by Airbus at TRL 4, including a brief benchmarking review of similar practices in industry and other Airbus' project management tools. All information gathered contributed to the creation of a complete set of criteria.
Journal Article

A Novel Technique for Investigating the Characteristics and History of Deposits Formed Within High Pressure Fuel Injection Equipment

2012-09-10
2012-01-1685
The recent developments in diesel fuel injection equipment coupled with the moves in the US to using ULSD and biodiesel blends has seen an increase in the number of reports from both engine manufacturers and fleet operators regarding fuel system deposit formation issues. These deposits not only form on and within the fuel injectors but they also form elsewhere in the fuel system, due to fuel recirculation. These will eventually accumulate in the fuel filters. Historically, diesel fuel system deposits have been attributed to contamination of the fuel or the degradation of the fuel with age. Such age related degradation has been attributed to oxidation of the fuel via well documented pathways, although the initiation of this process is still poorly understood. Papers at recent SAE meetings in Florence, San Antonio, Rio de Janeiro, San Diego and Kyoto have addressed many of these causes.
Technical Paper

The Influence of Compression Ratio on Indicated Emissions and Fuel Economy Responses to Input Variables for a D.I Diesel Engine Combustion System

2012-04-16
2012-01-0697
The effect of compression ratio on sensitivity to changes in start of injection and air-fuel ratio has been investigated on a single-cylinder DI diesel engine at fixed low and medium speeds and loads. Compression ratio was set to 17.9:1 or 13.7:1 by using pistons with different bowl sizes. Injection timing and air-to-fuel ratio were swept around a nominal map point at which gross IMEP and NOx values were matched for the two compression ratios. It was found that CO, HC and ISFC were higher at low compression ratio, but the soot/NOx trade-off improved and this could be exploited to reduce the fuel economy penalty. Sensitivity to inputs is generally similar, but high compression ratio tended to have steeper response gradients. Reducing compression ratio to 13.7 gave rise to a marked degradation of performance at light load, producing high CO emissions and a fall in combustion efficiency. This could be eased by reducing rail pressure, but the advantage in smoke emission was lost.
Technical Paper

Diesel Injector Deposits - An Issue That Has Evolved with Engine Technology

2011-08-30
2011-01-1923
Diesel engines have traditionally been favoured in heavy-duty applications for their fuel economy, robustness, reliability and relative lack of fuel sensitivity. Recently it has seen a growth in its popularity in light duty applications due particularly to its fuel efficiency. However, as the engine technology and particularly the fuel injection equipment has evolved to meet ever stricter emissions legislation the engines have become more sensitive to deposit formation resulting from changes in fuel quality. This paper reviews bouts of concern over diesel fuel injector deposits, possible causes for the phenomenon and test methods designed to screen fuels to eliminate problems.
Journal Article

The Potential for Fibre Alignment in the Manufacture of Polymer Composites from Recycled Carbon Fibre

2009-11-10
2009-01-3237
This paper studies the feasibility and potential benefits of aligning recycled carbon fibres, in the form of short individual filaments, to manufacture fibre reinforced polymer composites. A review of fibre alignment processes is presented to provide insight into the different alignment technologies. The main focus is on wet hydrodynamic processes, which offer a high degree of alignment for discontinuous fibres. The process parameters that govern the alignment efficiency are also reported. The effect of alignment on fibre packing efficiency in the manufacture of composites is included, together with a report of preliminary fibre alignment results obtained from three different alignment processes.
X