Refine Your Search

Topic

Search Results

Technical Paper

Experimental-Numerical Analysis of Gasoline Spray-Wall Impingement at Ultra-High Injection Pressure for GCI Application

2023-08-28
2023-24-0082
Nowadays, in the perspective of a full electric automotive scenario, internal combustion engines can still play a central role in the fulfilment of different needs if the efficiency will be improved, and the tailpipe emission will be further limited. Gasoline Compression Ignition engines can offer a favourable balance between NOx, particulate, operating range. Stable operations are ensured by ultra-high gasoline injection pressure and tailored injection patterns in order to design the most proper local fuel distribution. In this context, engine simulations by means of CFD codes can provide insights on the design of the injection parameters, and emphasis must be placed on the capture of spray-wall impingement behaviour under those non-conventional conditions. This paper aims to analyse the spray-wall impingement behaviour of ultra-high gasoline spray using a combined experimental-CFD approach.
Technical Paper

Development and Validation of a Virtual Sensor for Estimating the Maximum in-Cylinder Pressure of SI and GCI Engines

2021-09-05
2021-24-0026
This work focuses on the development and validation of a data-driven model capable of predicting the maximum in-cylinder pressure during the operation of an internal combustion engine, with the least possible computational effort. The model is based on two parameters, one that represents engine load and another one the combustion phase. Experimental data from four different gasoline engines, two turbocharged Gasoline Direct Injection Spark Ignition, a Naturally Aspirated SI and a Gasoline Compression Ignition engine, was used to calibrate and validate the model. Some of these engines were equipped with technologies such as Low-Pressure Exhaust Gas Recirculation and Water Injection or a compression ignition type of combustion in the case of the GCI engine. A vast amount of engine points were explored in order to cover as much as possible of the operating range when considering automotive applications and thus confirming the broad validity of the model.
Technical Paper

Experimental Investigation on the Effects of Cooled Low Pressure EGR and Water Injection on Combustion of a Turbocharged GDI Engine

2020-09-27
2020-24-0003
This work focuses on the effects of cooled Low Pressure EGR and Water Injection observed by conducting experimental tests consisting mainly of Spark Advance sweeps at different cooled LP-EGR and WI rates. The implications on combustion and main engine performance indexes are then analysed and modelled with a control-oriented approach, showing that combustion duration and phase and exhaust gas temperature are the main affected parameters. Results show that cooled LP-EGR and WI have similar effects, being the associated combustion speed decrease the main cause of exhaust gas temperature reduction. Experimental data is used to identify control-oriented polynomial models able to capture the effects of LP-EGR and WI on both these aspects. The limitations of LP-EGR are also explored, identifying maximum compressor volumetric flow and combustion stability as the main ones.
Journal Article

The Use of Piezoelectric Washers for Feedback Combustion Control

2020-04-14
2020-01-1146
The use of piezoelectric cylinder pressure sensors is very popular during engine testing, but cylinder pressure information is becoming mandatory also in several on-board applications, where Low Temperature Combustion (LTC) approaches require a feedback control of combustion, due to poor combustion stability and the risk of knock or misfire. Several manufacturers showed the capability to develop solutions for cylinder pressure sensing in on-board automotive and aeronautical applications, and some of them have been patented. The most straight-forward approach seems the application of a piezo-electric washer as a replacement of the original part equipping the spark plug; the injector could also be used to transfer the cylinder pressure information to the piezoelectric quartz, in diesel or Gasoline Direct Injections (GDI) engines.
Technical Paper

Development and Validation of a Control-Oriented Analytic Engine Simulator

2019-09-09
2019-24-0002
Due to the recent anti-pollution policies, the performance increase in Spark Ignition (SI) engines is currently under the focus of automotive manufacturers. This trend drives control systems designers to investigate accurate solutions and build more sophisticated algorithms to increase the efficiency of this kind of engines. The development of a control strategy is composed of several phases and steps, and the first part of such process is typically spent in defining and investigating the logic of the strategy. During this phase it is often useful to have a light engine simulator, which allows to have robust synthetic combustion data with a low calibration and computational effort. In the first part of this paper, a description of the control-oriented ANalytical Engine SIMulator (ANESIM) is carried out.
Journal Article

Injection Pattern Design for Real Time Control of Diesel Engine Acoustic Emission

2017-03-28
2017-01-0596
Upcoming more stringent emission regulations throughout the world pose a real challenge, especially in regard to Diesel systems for passenger cars, where the need of additional after-treatment has a big impact in terms of additional system costs and available packaging space. Therefore, the need for strategies that allow managing combustion towards lower emissions, that require a precise control of the combustion outputs, is definitely increasing. Acoustic emission of internal combustion engines contains a large amount of information related to engine behavior and working conditions. Mechanical noise and combustion noise are usually the main contributions to the noise produced by an engine. In particular, recent research from the same authors of this paper demonstrated that combustion noise can be used as an indicator of the combustion that is taking place inside the combustion chamber and therefore as a reference for the control strategy.
Technical Paper

Engine Acoustic Emission Used as a Control Input: Applications to Diesel Engines

2016-04-05
2016-01-0613
The need for strategies that allow managing combustion in an adaptive way has recently widely increased. Especially Diesel engines aimed for clean combustion require a precise control of the combustion outputs. Acoustic emission of internal combustion engines contains a lot of information related to engine behavior and working conditions. Mechanical noise and combustion noise are usually the main contributions to the noise produced by an engine. Combustion noise in particular can be used as an indicator of the combustion that is taking place inside the combustion chamber and therefore as a reference for the control strategy. This work discusses the correlations existing between in cylinder combustion and the acoustic emission radiated by the engine and presents a possible approach to use this signal in the engine management system for control purposes.
Journal Article

Assessment of Advanced SGS Models for LES Analysis of ICE Wall-Bounded Flows - Part I: Basic Test Case

2016-03-14
2016-01-9041
Large Eddy Simulation (LES) represents nowadays one of the most promising techniques for the evaluation of the dynamics and evolution of turbulent structures characterizing internal combustion engines (ICE). In the present paper, subdivided into two parts, the capabilities of the open-source CFD code OpenFOAM® v2.3.0 are assessed in order to evaluate its suitability for engine cold flow LES analyses. Firstly, the code dissipative attitude is evaluated through an inviscid vortex convection test to ensure that the levels of numerical dissipation are compatible with LES needs. Quality and completeness estimators for LES simulations are then proposed. In particular the Pope M parameter is used as a LES completeness indicator while the LSR parameter provides useful insights far calibrating the grid density. Other parameters such as the two-grid LESIQk index are also discussed.
Technical Paper

Analysis of the Mixture Formation at Partial Load Operating Condition: The Effect of the Throttle Valve Rotational Direction

2015-09-06
2015-24-2410
In the next incoming future the necessity of reducing the raw emissions leads to the challenge of an increment of the thermal engine efficiency. In particular it is necessary to increase the engine efficiency not only at full load but also at partial load conditions. In the open literature very few technical papers are available on the partial load conditions analysis. In the present paper the analysis of the effect of the throttle valve rotational direction on the mixture formation is analyzed. The engine was a PFI 4-valves motorcycle engine. The throttle valve opening angle was 17.2°, which lays between the very partial load and the partial load condition. The CFD code adopted for the analysis was the FIRE AVL code v. 2013.2. The exhaust, intake and compression phases till TDC were simulated: inlet/outlet boundary conditions from 1D simulations were imposed.
Technical Paper

Remote Combustion Sensing Methodology for PCCI and Dual-Fuel Combustion Control

2015-09-06
2015-24-2420
The increasing request for pollutant emissions reduction spawned a great deal of research in the field of innovative combustion methodologies, that allow obtaining a significant reduction both in particulate matter and NOx emissions. Unfortunately, due to their nature, these innovative combustion strategies are very sensitive to in-cylinder thermal conditions. Therefore, in order to obtain a stable combustion, a closed-loop combustion control methodology is needed. Prior research has demonstrated that a closed-loop combustion control strategy can be based on the real-time analysis of in-cylinder pressure trace, that provides important information about the combustion process, such as Start (SOC) and Center of combustion (CA50), pressure peak location and torque delivered by each cylinder. Nevertheless, cylinder pressure sensors on-board installation is still uncommon, due to problems related to unsatisfactory measurement long term reliability and cost.
Technical Paper

The Effect of the Throttle Valve Rotational Direction on the Tumble Motion at Different Partial Load Conditions

2015-04-14
2015-01-0380
In PFI and GDI engines the tumble motion is the most important charge motion for enhancing the in-cylinder turbulence level at ignition time close to the spark plug position. In the open literature different studies were reported on the tumble motion, experimental and not. In the present paper the research activity on the tumble generation at partial load and very partial load conditions was presented. The added value of the analysis was the study of the effect of the throttle valve rotational direction on the tumble motion and the final level of turbulence at the ignition time close to the spark plug location. The focus was to determine if the throttle rotational direction was crucial for the tumble ratio and the turbulence level. The analyzed engine was a PFI 4-valves motorcycle engine. The engine geometry was formed by the intake duct and the cylinder. The CFD code was FIRE AVL code 2013.1.
Journal Article

Non-Intrusive Methodology for Estimation of Speed Fluctuations in Automotive Turbochargers under Unsteady Flow Conditions

2014-04-01
2014-01-1645
The optimization of turbocharging systems for automotive applications has become crucial in order to increase engine performance and meet the requirements for pollutant emissions and fuel consumption reduction. Unfortunately, performing an optimal turbocharging system control is very difficult, mainly due to the fact that the flow through compressor and turbine is highly unsteady, while only steady flow maps are usually provided by the manufacturer. For these reasons, one of the most important quantities to be used onboard for optimal turbocharger system control is the rotational speed fluctuation, since it provides information both on turbocharger operating point and on the energy of the unsteady flow in the intake and exhaust circuits. This work presents a methodology that allows determining the instantaneous turbocharger rotational speed through a proper frequency processing of the signal coming from one accelerometer mounted on the turbocharger compressor.
Technical Paper

Influence of Cylindrical, k, and ks Diesel Nozzle Shape on the Injector Internal Flow Field and on the Emerging Spray Characteristics

2014-04-01
2014-01-1428
Today, multi-hole Diesel injectors can be mainly characterized by three different nozzle hole shapes: cylindrical, k-hole, and ks-hole. The nozzle hole layout plays a direct influence on the injector internal flow field characteristics and, in particular, on the cavitation and turbulence evolution over the hole length. In turn, the changes on the injector internal flow correlated to the nozzle shape produce immediate effects on the emerging spray. In the present paper, the fluid dynamic performance of three different Diesel nozzle hole shapes are evaluated: cylindrical, k-hole, and ks-hole. The ks-hole geometry was experimentally characterized in order to find out its real internal shape. First, the three nozzle shapes were studied by a fully transient CFD multiphase simulation to understand their differences in the internal flow field evolutions. In detail, the attention was focused on the turbulence and cavitation levels at hole exit.
Journal Article

Experimental Characterization of the Geometrical Shape of ks-hole and Comparison of its Fluid Dynamic Performance Respect to Cylindrical and k-hole Layouts

2013-09-08
2013-24-0008
Diesel engine performances are strictly correlated to the fluid dynamic characteristics of the injection system. Actual Diesel engines employ injector characterized by micro-orifices operating at injection pressure till 20MPa. These main injection characteristics resulted in the critical relation between engine performance and injector hole shape. In the present study, the authors' attention was focused on the hole geometry influence on the main injector fluid dynamic characteristics. At this purpose, three different nozzle hole shapes were considered: cylindrical, k, and ks nozzle shapes. Because of the lack of information available about ks-hole real geometry, firstly it was completely characterized by the combined use of two non-destructive techniques. Secondly, all the three nozzle layouts were characterized from the fluid dynamic point of view by a fully transient CFD multiphase simulation methodology previously validated by the authors against experimental results.
Technical Paper

A Numerical Methodology for the Multi-Objective Optimization of an Automotive DI Diesel Engine

2013-09-08
2013-24-0019
Nowadays, an automotive DI Diesel engine is demanded to provide an adequate power output together with limit-complying NOx and soot emissions so that the development of a specific combustion concept is the result of a trade-off between conflicting objectives. In other words, the development of a low-emission DI diesel combustion concept could be mathematically represented as a multi-objective optimization problem. In recent years, genetic algorithm and CFD simulations were successfully applied to this kind of problem. However, combining GA optimization with actual CFD-3D combustion simulations can be too onerous since a large number of simulations is usually required, resulting in a high computational cost and, thus, limiting the suitability of this method for industrial processes.
Technical Paper

Thermal Management Strategies for SCR After Treatment Systems

2013-09-08
2013-24-0153
While the Diesel Particulate Filter (DPF) is actually a quasi-standard equipment in the European Diesel passenger cars market, an interesting solution to fulfill NOx emission limits for the next EU 6 legislation is the application of a Selective Catalytic Reduction (SCR) system on the exhaust line, to drastically reduce NOx emissions. In this context, one of the main issues is the performance of the SCR system during cold start and warm up phases of the engine. The exhaust temperature is too low to allow thermal activation of the reactor and, consequently, to promote high conversion efficiency and significant NOx concentration reduction. This is increasingly evident the smaller the engine displacement, because of its lower exhaust system temperature (reduced gross power while producing the same net power, i.e., higher efficiency).
Technical Paper

Development of a Novel Approach for Non-Intrusive Closed-Loop Heat Release Estimation in Diesel Engines

2013-04-08
2013-01-0314
Over the past years, policies affecting pollutant emissions control for Diesel engines have become more and more restrictive. In order to meet such requirements, innovative combustion control methods have currently become a key factor. Several studies demonstrate that the desired pollutant emission reduction can be achieved through a closed-loop combustion control based on in-cylinder pressure processing. Nevertheless, despite the fact that cylinder pressure sensors for on-board application have been recently developed, large scale deployment of such systems is currently hindered by unsatisfactory long term reliability and high costs. Whereas both the accuracy and the reliability of pressure measurement could be improved in future years, pressure sensors would still be a considerable part of the cost of the entire engine management system.
Technical Paper

Diesel Engine Acoustic Emission Analysis for Combustion Control

2012-04-16
2012-01-1338
Future regulations on pollutant emissions will impose a drastic cut on Diesel engines out-emissions. For this reason, the development of closed-loop combustion control algorithms has become a key factor in modern Diesel engine management systems. Diesel engines out-emissions can be reduced through a highly premixed combustion portion in low and medium load operating conditions. Since low-temperature premixed combustions are very sensitive to in-cylinder thermal conditions, the first aspect to be considered in newly developed Diesel engine control strategies is the control of the center of combustion. In order to achieve the target center of combustion, conventional combustion control algorithms correct the measured value varying main injection timing. A further reduction in engine-out emissions can be obtained applying an appropriate injection strategy.
Journal Article

A Numerical Model for Flash Boiling of Gasoline-Ethanol Blends in Fuel Injector Nozzles

2011-09-11
2011-24-0003
Fuels are formulated by a variety of different components characterized by chemical and physical properties spanning a wide range of values. Changing the ratio between the mixture component molar fractions, it is possible to fulfill different requirements. One of the main properties that can be strongly affected by mixture composition is the volatility that represents the fuel tendency to vaporize. For example, changing the mixture ratio between alcohols and hydrocarbons, it is possible to vary the mixture saturation pressure, therefore the fuel vaporization ratio during the injection process. This paper presents a 1D numerical model to simulate the superheated injection process of a gasoline-ethanol mixture through real nozzle geometries. In order to test the influence of the mixture properties on flash atomization and flash evaporation, the simulation is repeated for different mixtures characterized by different gasoline-ethanol ratio.
Technical Paper

Fast Prototyping of a Racing Diesel Engine Control System

2008-12-02
2008-01-2942
This paper shows how Rapid Control Prototyping (RCP) and Computational Fluid Dynamics (CFD) techniques have been applied to design and implement an engine control system for a common rail diesel engine. The project aim is to setup a high performance engine in order to participate to the Italian Tractor Pulling Championship (Prostock category). The original engine is a John Deere 6081 Tier2 model, already equipped with a common rail system. Engine performance is substantially determined by the control system, which is in charge of limiting engine speed, boost pressure and Air to Fuel Ratio (AFR). Given that typically the information and equipment needed to change control parameters are not accessible to customers, the first step of the project has been to replace the original control system, while maintaining injectors and pumps. This solution can guarantee the best performance, but it requires time to design the new control system, both in terms of hardware and software.
X