Refine Your Search

Topic

Author

Search Results

Technical Paper

NOx Measurement and Characterization in a Gaseous Fueled High-Pressure Direct-Injection Engine

2023-10-31
2023-01-1628
Heavy-duty (HD) vehicles are a crucial part of the transportation sector; however, strict governmental regulations will require future HD vehicles to meet even more rigid NOx emission standards than what already exist. The use of natural gas (NG) as the primary fuel in HD vehicles can immediately reduce the NOx emissions through lower flame temperatures as compared to traditional diesel and can serve as a precursor to even less carbon intensive fuels as they become more readily available. Pilot ignited direct injection natural gas (PIDING) engine technology is one example of how NG can be used in HD vehicles while maintaining diesel-like efficiency. However, NOx emissions still need to be mitigated to avoid negative air quality effects. Exhaust gas recirculation (EGR) is known to reduce in-cylinder temperatures and thus reduce in-cylinder NOx emissions in diesel engines, but the effects of EGR are not as well understood in PIDING engines.
Technical Paper

Fuel Cell Hybrid Electric Vehicle Control: Driving Pattern Recognition Techniques to Improve Vehicle Energy Efficiency

2023-08-28
2023-24-0147
Hydrogen technologies have been widely recognized as effective means to reduce Greenhouse Gases emissions, a crucial issue to target a Carbon-free world aimed by the European Green Deal. Within the road transport sector, electric vehicles with a hybrid powertrain, including battery packs and hydrogen Fuel Cells (FCs), are gaining importance owing to their adaptability to a wide variety of applications, high driving mileages and short refueling times. The control strategy is crucial to achieve a proper management of the energy flows, to maximize energy efficiency and maximize components durability and state of health. This work is focused on the design of an integrated Energy Management Strategy (EMS), whose aim is to minimize the hydrogen consumption, by operating the FC mainly in the high efficiency region while the battery pack works according to a charge sustaining mode. The proposed EMS is composed of a control algorithm and a supervisor.
Technical Paper

On-Road CO2 and NOx Emissions for a Heavy-Duty Truck with Hydrogen-Diesel Co-Combustion

2023-04-11
2023-01-0281
Heavy-duty diesel trucking is responsible for 25%-30% of the road transportation CO2 emissions in North America. Retrofitting class-8 trucks with a complementary hydrogen fuelling system makes it possible to co-combust hydrogen and diesel in the existing internal combustion engine (ICE), thus minimizing the costs associated with switching to non-ICE platforms and reducing the barrier for the implementation of low-carbon gaseous fuels such as hydrogen. This retrofitting approach is evaluated based on the exhaust emissions of a converted truck with several thousand kilometres of road data. The heavy-duty truck used here was retrofitted with an air-intake hydrogen injection system, onboard hydrogen storage tanks, and a proprietary hydrogen controller enabling it to operate in hydrogen-diesel co-combustion (HDC) mode.
Technical Paper

Refinement of Gaussian Process Regression Modeling of Pilot-Ignited Direct-Injected Natural Gas Engines

2022-09-23
2022-01-5075
This paper presents a sensitivity-based input selection algorithm and a layered modeling approach for improving Gaussian Process Regression (GPR) modeling with hyperparameter optimization for engine model development with data sets of 120 training points or less. The models presented here are developed for a Pilot-Ignited Direct-Injected Natural Gas (PIDING) engine. A previously developed GPR modeling method with hyperparameter optimization produced some models with normalized root mean square error (nRMSE) over 0.2. The input selection method reduced the overall error by 0.6% to 18.85% while the layered modeling method improved the error for carbon monoxide (CO) by 52.6%, particulate matter (PM) by 32.5%, and nitrogen oxides (NOX) by 29.8%. These results demonstrate the importance of selecting only the most relevant inputs for machine learning models.
Technical Paper

Two-Colour Pyrometry Measurements of Low-Temperature Combustion using Borescopic Imaging

2021-04-06
2021-01-0426
Low temperature combustion (LTC) of diesel fuel offers a path to low engine emissions of nitrogen oxides (NOx) and particulate matter (PM), especially at low loads. Borescopic optical imaging offers insight into key aspects of the combustion process without significantly disrupting the engine geometry. To assess LTC combustion, two-colour pyrometry can be used to quantify local temperatures and soot concentrations (KL factor). High sensitivity photo-multiplier tubes (PMTs) can resolve natural luminosity down to low temperatures with adequate signal-to-noise ratios. In this work the authors present the calibration and implementation of a borescope-based system for evaluating low luminosity LTC using spatially resolved visible flame imaging and high-sensitivity PMT data to quantify the luminous-area average temperature and soot concentration for temperatures from 1350-2600 K.
Technical Paper

Characterization of Methane Emissions from a Natural Gas-Fuelled Marine Vessel under Transient Operation

2021-04-06
2021-01-0631
Natural gas is an increasingly attractive fuel for marine applications due to its abundance, lower cost, and reduced CO2, NOx, SOx, and particulate matter (PM) emissions relative to conventional fuels such as diesel. Methane in natural gas is a potent greenhouse gas (GHG) and must be monitored and controlled to minimize GHG emissions. In-use GHG emissions are commonly estimated from emission factors based on steady state engine operation, but these do not consider transient operation which has been noted to affect other pollutants including PM and NOx. This study compares methane emissions from a coastal marine vessel during transient operation to those expected based on steady state emission factors. The exhaust methane concentration from a diesel pilot-ignited, low pressure natural gas-fuelled engine was measured with a wavelength modulation spectroscopy system, during periods of increasing and decreasing engine load (between 3 and 90%).
Technical Paper

A Machine Learning Modeling Approach for High Pressure Direct Injection Dual Fuel Compressed Natural Gas Engines

2020-09-15
2020-01-2017
The emissions and efficiency of modern internal combustion engines need to be improved to reduce their environmental impact. Many strategies to address this (e.g., alternative fuels, exhaust gas aftertreatment, novel injection systems, etc.) require engine calibrations to be modified, involving extensive experimental data collection. A new approach to modeling and data collection is proposed to expedite the development of these new technologies and to reduce their upfront cost. This work evaluates a Gaussian Process Regression, Artificial Neural Network and Bayesian Optimization based strategy for the efficient development of machine learning models, intended for engine optimization and calibration. The objective of this method is to minimize the size of the required experimental data set and reduce the associated data collection cost for engine modeling.
Technical Paper

ECN Spray G Injector: Assessment of Numerical Modeling Accuracy

2018-04-03
2018-01-0306
Gasoline Direct Injection (GDI) is a leading technology for Spark Ignition (SI) engines: control of the injection process is a key to design the engine properly. The aim of this paper is a numerical investigation of the gasoline injection and the resulting development of plumes from an 8-hole Spray G injector into a quiescent chamber. A LES approach has been used to represent with high accuracy the mixing process between the injected fuel and the surrounding mixture. A Lagrangian approach is employed to model the liquid spray. The fuel, considered as a surrogate of gasoline, is the iso-octane which is injected into the high-pressure vessel filled with nitrogen. The numerical results have been compared against experimental data realized in the optical chamber. To reveal the geometry of plumes two different imaging techniques have been used in a quasi-simultaneous mode: Mie-scattering for the liquid phase and schlieren for the gaseous one.
Technical Paper

Development of a Research-Oriented Cylinder Head with Modular Injector Mounting and Access for Multiple In-Cylinder Diagnostics

2017-09-04
2017-24-0044
Alternative fuel injection systems and advanced in-cylinder diagnostics are two important tools for engine development; however, the rapid and simultaneous achievement of these goals is often limited by the space available in the cylinder head. Here, a research-oriented cylinder head is developed for use on a single cylinder 2-litre engine, and permits three simultaneous in-cylinder combustion diagnostic tools (cylinder pressure measurement, infrared absorption, and 2-color pyrometry). In addition, a modular injector mounting system enables the use of a variety of direct fuel injectors for both gaseous and liquid fuels. The purpose of this research-oriented cylinder head is to improve the connection between thermodynamic and optical engine studies for a wide variety of combustion strategies by facilitating the application of multiple in-cylinder diagnostics.
Technical Paper

Natural Gas Fueled Engines Modeling under Partial Stratified Charge Operating Conditions

2017-09-04
2017-24-0093
Using natural gas in internal combustion engines (ICEs) is emerging as a promising strategy to improve thermal efficiency and reduce exhaust emissions. One of the main benefits related to the use of this fuel is that the engine can be run with lean mixtures without compromising its performances. However, as the mixture is leaned out beyond the Lean Misfire Limit (LML), several technical problems are more likely to occur. The flame propagation speed gradually decreases, leading to a slower heat release and a low combustion quality, thus increasing the occurrence of misfiring and incomplete combustions. This in turn results in a sharp increment in CO and UHC emissions, as well as in cycle-to-cycle variability. In order to limit the above-mentioned problems, different solutions have been proposed over the last decade.
Technical Paper

Effect of Injection Strategies on Emissions from a Pilot-Ignited Direct-Injection Natural-Gas Engine- Part I: Late Post Injection

2017-03-28
2017-01-0774
High-pressure direct-injection (HPDI) in heavy duty engines allows a natural gas (NG) engine to maintain diesel-like performance while deriving most of its power from NG. A small diesel pilot injection (5-10% of the fuel energy) is used to ignite the direct injected gas jet. The NG burns in a predominantly non-premixed combustion mode which can produce particulate matter (PM). Here we study the effect of injection strategies on emissions from a HPDI engine in two parts. Part-I will investigates the effect of late post injection (LPI) and Part II will study the effect of slightly premixed combustion (SPC) on emission and engine performance. PM reductions and tradeoffs involved with gas late post-injections (LPI) was investigated in a single-cylinder version of a 6-cylinder,15 liter HPDI engine. The post injection contains 10-25% of total fuel mass, and occurs after the main combustion event.
Technical Paper

Effect of Injection Strategies on Emissions from a Pilot-Ignited Direct-Injection Natural-Gas Engine- Part II: Slightly Premixed Combustion

2017-03-28
2017-01-0763
High-pressure direct-injection (HPDI) in heavy duty engines allows a natural gas (NG) engine to maintain diesel-like performance while deriving most of its power from NG. A small diesel pilot injection (5-10% of the fuel energy) is used to ignite the direct injected gas jet. The NG burns in a predominantly mixing-controlled combustion mode which can produce particulate matter (PM). Here we study the effect of injection strategies on emissions from a HPDI engine in two parts. Part-I investigated the effect of late post injection (LPI); the current paper (Part-II) reports on the effects of slightly premixed combustion (SPC) on emission and engine performance. In SPC operation, the diesel injection is delayed, allowing more premixing of the natural gas prior to ignition. PM reductions and tradeoffs involved with gas slightly premixed combustion was investigated in a single-cylinder version of a 6-cylinder, 15 liter HPDI engine.
Technical Paper

Fast Exhaust Nephelometer (FEN): A New Instrument for Measuring Cycle-Resolved Engine Particulate Emission

2016-10-17
2016-01-2329
Soot emissions from direct-injection engines are sensitive to the fuel-air mixing process, and may vary between combustion cycles due to turbulence and injector variability. Conventional exhaust emissions measurements cannot resolve inter- or intra-cycle variations in particle emissions, which can be important during transient engine operations where a few cycles can disproportionately affect the total exhaust soot. The Fast Exhaust Nephelometer (FEN) is introduced here to use light scattering to measure particulate matter concentration and size near the exhaust port of an engine with a time resolution of better than one millisecond. The FEN operates at atmospheric pressure, sampling near the engine exhaust port and uses a laser diode to illuminate a small measurement volume. The scattered light is focused on two amplified photodiodes.
Technical Paper

Application of an In-Cylinder Local Infrared Absorption Fuel Concentration Sensor in a Diesel-Ignited Dual-Fuel Engine

2016-10-17
2016-01-2310
As global energy demands continue to be met with ever evolving and stricter emissions requirements, natural gas (NG) has become a highly researched alternative to conventional fossil fuels in many industrial sectors. Transportation is one such field that can utilize the benefits of NG as a primary fuel for use in internal combustion engines (ICEs). In the context of heavy-duty on-highway transportation applications, diesel-ignited dual-fuel (DIDF) combustion of NG has been identified as a commercially viable alternative technology. Previous investigations of DIDF have examined the various trends present across the spectrum of DIDF operating space. However, in-cylinder processes are still not well understood and this investigation aims to further understanding in this area. An in-cylinder, local infrared absorption fuel concentration sensor is used to examine in-cylinder processes by comparison with previous optical and thermodynamic studies.
Technical Paper

Natural Gas Partially Stratified Charge Combustion: Extended Analysis of Experimental Validation and Study of Turbulence Impact on Flame Propagation

2016-04-05
2016-01-0596
A Large Eddy Simulation (LES) numerical study of the Partially Stratified Charge (PSC) combustion process is here proposed, carried out with the open Source code OpenFOAM, in a Constant Volume Combustion Chamber (CVCC). The solver has already been validated in previous papers versus experimental data under a limited range of operating conditions. The operating conditions domain for the model validation is extended in this paper, mostly by varying equivalence ratio, to better highlight the influence of turbulence on flame front propagation. Effects of grid sizing are also shown, to better emphasize the trade-off between the level of accuracy of turbulent vortex description, and their impact on the kinematics of flame propagation. Results show the validity of the approach that is evident by comparing numerical and experimental data.
Technical Paper

Effect of Fueling Control Parameters on Combustion and Emissions Characteristics of Diesel-Ignited Methane Dual-Fuel Combustion

2016-04-05
2016-01-0792
Diesel-ignited dual-fuel (DIDF) combustion of natural gas (NG) is a promising strategy to progress the application of NG as a commercially viable compression ignition engine fuel. Port injection of gaseous NG applied in tandem with direct injection of liquid diesel fuel as an ignition source permits a high level of control over cylinder charge preparation, and therefore combustion. Across the broad spectrum of possible combustion conditions in DIDF operation, different fundamental mechanisms are expected to dominate the fuel conversion process. Previous investigations have advanced the understanding of which combustion mechanisms are likely present under certain sets of conditions, permitting the successful modeling of DIDF combustion for particular operating modes. A broader understanding of the transitions between different combustion modes across the spectrum of DIDF warrants further effort.
Technical Paper

Combustion and Emissions of Paired-Nozzle Jets in a Pilot-Ignited Direct-Injection Natural Gas Engine

2016-04-05
2016-01-0807
This paper examines the combustion and emissions produced using a prototype fuel injector nozzle for pilot-ignited direct-injection natural gas engines. In the new geometry, 7 individual equally-spaced gas injection holes were replaced by 7 pairs of closely-aligned holes (“paired-hole nozzle”). The paired-hole nozzle was intended to reduce particulate formation by increasing air entrainment due to jet interaction. Tests were performed on a single-cylinder research engine at different speeds and loads, and over a range of fuel injection and air handling conditions. Emissions were compared to those resulting from a reference injector with equally spaced holes (“single-hole nozzle”). Contrary to expectations, the CO and PM emissions were 3 to 10 times higher when using the paired-hole nozzles. Despite the large differences in emissions, the relative change in emissions in response to parametric changes was remarkably similar for single-hole and paired-hole nozzles.
Technical Paper

Partially Stratified Charge Natural Gas Combustion: The Impact of Uncertainties on LES Modeling

2015-09-06
2015-24-2409
The aim of this work is to carry out statistical analyses on simulated results obtained from large eddy simulations (LES) to characterize spark-ignited combustion process in a partially premixed natural gas mixture in a constant volume combustion chamber (CVCC). Inhomogeneity in fuel concentration was introduced through a fuel jet comprising up to 0.6 per cent of the total fuel mass, in the vicinity of the spark ignition gap. The numerical data were validated against experimental measurements, in particular, in terms of jet penetration and spread, flame front propagation and overall pressure trace. Perturbations in key flow parameters, namely inlet velocity, initial velocity field, and turbulent kinetic energy, were also introduced to evaluate their influence on the combustion event. A total of 12 simulations were conducted.
Technical Paper

Partially Stratified Charge Natural Gas Combustion: A LES Numerical Analysis

2015-04-14
2015-01-0398
The aim of this work is to assess the accuracy of results obtained from Large Eddy Simulations (LES) of a partially-premixed natural gas spark-ignition combustion process in a Constant Volume Combustion Chamber (CVCC). To this aim, the results are compared with the experimental data gathered at the University of British Columbia. The computed results show good agreement with both flame front visualization and pressure rise curves, allowing for drawing important statements about the peculiarities of the Partially Stratified Combustion ignition concept and its benefits in ultra-lean combustion processes.
Technical Paper

Application of Fuel Momentum Measurement Device for Direct Injection Natural Gas Engines

2015-04-14
2015-01-0915
In direct-injection engines, combustion and emission formation is strongly affected by injection quality. Injection quality is related to mass-flow rate shape, momentum rate shape, stability of pulses as well as mechanical and hydraulic delays associated with fuel injection. Finding these injector characteristics aids the interpretation of engine experiments and design of new injection strategies. The goal of this study is to investigate the rate of momentum for the single and post injections for high-pressure direct-injection natural gas injectors. The momentum measurement method has been used before to study momentum rate of injection for single and split injections for diesel sprays. In this paper, a method of momentum measurement for gas injections is developed in order to present transient momentum rate shape during injection timing. In this method, a gas jet impinges perpendicularly on a pressure transducer surface.
X