Refine Your Search

Topic

Search Results

Journal Article

Effect of Friction Torque on Electromechanical Brake System Dynamics

2017-06-05
2017-01-1902
Actuator and roller screw mechanism are key components of electromechanical brake (EMB) system in automotive and aerospace industry. The inverted planetary roller screw mechanism (IPRSM) is particularly competitive due to its high load-carrying capacity and small assembly size. For such systems, friction characteristic and friction torque generated from rolling/sliding contacts can be an important factor that affects the dynamic performance as well as vibration behavior. This paper investigates the modeling and simulation of the EMB system in early design stage with special attention to friction torque modelling of IPRSM. Firstly, a step-by-step system model development is established, which includes the controller, servo motor, planetary gear train and roller screw mechanism to describe the dynamic behavior of the EMB system.
Journal Article

Effect of Component Flexibility on Axle System Dynamics

2017-06-05
2017-01-1772
The prediction and control of gear vibration and noise has become very important in the design of a quiet, high-quality gearbox systems. The vibratory energy of the gear pair caused by transmission error excitation is transmitted structurally through shaft-bearing-housing assembly and radiates off from exterior housing surface. Most of the previous studies ignore the contribution of components flexibility to the transmission error (TE) and system dynamic responses. In this study, a system level model of axle system with hypoid gear pair is developed, aiming at investigating the effect of the elasticity of the shafts, bearings and housing on TE as well as the contribution of flexible bearings on the dynamic responses. The load distribution results and gear transmission errors are calculated and compared between different assumptions on the boundary conditions.
Journal Article

Comparative Study of Adaptive Algorithms for Vehicle Powertrain Noise Control

2016-03-14
2016-01-9108
Active noise control systems have been gaining popularity in the last couple of decades, due to the deficiencies in passive noise abatement techniques. In the future, a novel combination of passive and active noise control techniques may be applied more widely, to better control the interior sound quality of vehicles. In order to maximize the effectiveness of this combined approach, smarter algorithms will be needed for active noise control systems. These algorithms will have to be computationally efficient, with high stability and convergence rates. This will be necessary in order to accurately predict and control the interior noise response of a vehicle. In this study, a critical review of the filtered-x least mean square (FXLMS) algorithm and several other newly proposed algorithms for the active control of vehicle powertrain noise, is performed. The analysis examines the salient features of each algorithm, and compares their system performance.
Journal Article

Modified FxLMS Algorithm with Equalized Convergence Speed for Active Control of Powertrain Noise

2015-06-15
2015-01-2217
Current powertrain active noise control (ANC) systems are not sufficient enough to track the fast engine speed variations, and yield consistent convergence speeds for individual engine order such that a balanced noise reduction performance can be achieved over a broad frequency range. This is because most of these ANC systems are configured with the standard filtered-x least mean squares (FxLMS) algorithm, which has an inherent limitation in the frequency-dependent convergence behavior due to the existence of secondary path model (electro-acoustic path from the input of control loudspeaker to the output of monitoring error microphone) in the reference signal path. In this paper, an overview is given first to compare several recently modified FxLMS algorithms to improve the convergence speed for harmonic responses such as eigenvalue equalization FxLMS (EE-FXLMS) and normalized reference LMS (NX-LMS) algorithms.
Technical Paper

A Case Study: Application of Analytical and Numerical Techniques to Squeak and Rattle Analysis of a Door Assembly

2015-06-15
2015-01-2257
Squeak and rattle (S&R) problems in body structure and trim parts have become serious issues for automakers because of their influence on the initial quality perception of consumers. In this study, various CAE and experimental methods developed by Hyundai Motors for squeak and rattle analysis of door systems are reported. Friction-induced vibration and noise generation mechanisms of a door system are studied by an intelligent combination of experimental and numerical methods. It is shown that the effect of degradation of plastics used in door trims can be estimated by a numerical model using the properties obtained experimentally. Effects of changes in material properties such as Young's modulus and loss factor due to the material degradation as well as statistical variations are predicted for several door system configurations. As a new concept, the rattle and squeak index is proposed, which can be used to guide the design.
Technical Paper

Geometry Design of a Non-Pin Cycloid Drive for In-Wheel Motor

2015-06-15
2015-01-2172
Cycloid drives are widely used in the in-wheel motor for electric vehicles due to the advantages of large ratio, compact size and light weight. To improve the transmission efficiency and the load capability and reduce the manufacturing cost, a novel cycloid drive with non-pin design for the application in the in-wheel motor is proposed. Firstly, the generation of the gear pair is presented based on the gearing of theory. Secondly, the meshing characteristics, such as the contact zones, curvature difference, contact ratio and sliding coefficients are derived for performance evaluation. Then, the loaded tooth contact analysis (LTCA) is performed by establishing a mathematical model based on the Hertz contact theory to calculate the contact stress and deformation.
Technical Paper

Learning of Intelligent Controllers for Autonomous Unmanned Combat Aerial Vehicles by Genetic Cascading Fuzzy Methods

2014-09-16
2014-01-2174
Looking forward to an autonomous Unmanned Combat Aerial Vehicle (UCAV) for future applications, it becomes apparent that on-board intelligent controllers will be necessary for these advanced systems. LETHA (Learning Enhanced Tactical Handling Algorithm) was created to develop intelligent managers for these advanced unmanned craft through the novel means of a genetic cascading fuzzy system. In this approach, a genetic algorithm creates rule bases and optimizes membership functions for multiple fuzzy logic systems, whose inputs and outputs feed into one another alongside crisp data. A simulation space referred to as HADES (Hoplological Autonomous Defend and Engage Simulation) was created in which LETHA can train the UCAVs intelligent controllers.
Journal Article

Multi-Point Mesh Modeling and Nonlinear Multi-Body Dynamics of Hypoid Geared System

2013-05-13
2013-01-1895
A multi-point hypoid gear mesh model based on 3-dimensional loaded tooth contact analysis is incorporated into a coupled multi-body dynamic and vibration hypoid gear model to predict more detailed dynamic behavior of each tooth pair. To validate the accuracy of the proposed model, the time-averaged mesh parameters are applied to linear time-invariant (LTI) analysis and the dynamic responses, such as dynamic mesh force, dynamic transmission error, are computed, which demonstrates good agreement with that predicted by single-point mesh model. Furthermore, a nonlinear time-varying (NLTV) dynamic analysis is performed considering the effect of backlash nonlinearity and time-varying mesh parameters, such as mesh stiffness, transmission error, mesh point and line-of-action. Simulation results show that the time history of the mesh parameters and dynamic mesh force for each pair of teeth within a full engagement cycle can be simulated.
Journal Article

Development of a New Squeak and Rattle Detection Algorithm

2009-05-19
2009-01-2111
A new algorithm to detect and to quantify the seriousness of the detected squeak and rattle (S&R) events was developed. A T-F analysis technique called AWT, the Zwicker loudness model and leaky integration are employed to define new concepts we called transient specific loudness time histories and perceived transient loudness time history. The detection threshold of the perceived transient loudness was identified by a clever interpretation of jury test results. The proposed algorithm showed a good promise producing results that are well correlated with the jury tests. The new algorithm developed in this work will be able to automate detection and rating of the S&R events with good accuracy and with minimum possibility of false alarm under normal operating conditions
Technical Paper

Application of Analytic Wavelet Transform to Transient Signal Analyses

2007-05-15
2007-01-2321
The analytic wavelet transform (AWT) is a wavelet transform that works much like a transient Fourier transform. Therefore the AWT enables utilizing advantages of both the wavelet transform and Fourier transform. A special form of AWT developed for transient vibration and acoustics signal analyses is applied to various engineering signals in this paper. Application examples include a general time-frequency (T-F) analysis, analysis of exposures to impulsive vibrations and noises, and estimation of reverberation times. Some new definitions such as the T-F noise reduction and frequency weighted time history are defined by taking the advantage of unique capabilities of the AWT. Possible automotive applications of these new concepts are briefly discussed.
Technical Paper

An Experimental Study of the Chassis Vibration Transmissibility Applying a Spectral-based Inverse Substructuring Technique

2005-05-16
2005-01-2470
A proposed multi-coordinate spectral-based inverse substructuring approach is applied experimentally to examine the vibration transmissibility through chassis mounts. In this formulation, the vehicle system is partitioned into two substructures. One substructure comprises of the chassis and suspension, while the second one is the body structure and other attached components. The approach yields the free substructure dynamic characteristics that are extracted from the measured coupled system response spectra. The resultant free substructure transfer functions are verified by comparison of the re-synthesized results to the actual vehicle system measurements. A real life vehicle setup is utilized to demonstrate the salient features and capabilities of this approach, which includes the ability to compute the main structure-borne paths, dynamic interactions between the chassis and body, and interior noise and vibration response.
Technical Paper

Driveline NVH Modeling Applying a Multi-subsystem Spectral-based Substructuring Approach

2005-05-16
2005-01-2300
A new multi-level substructuring approach is proposed to predict the NVH response of driveline systems for the purpose of analyzing rear axle gear whine concern. The fundamental approach is rooted in the spectral-based compliance coupling theory for combining the dynamics of two adjacent subsystems. This proposed scheme employs test-based frequency response functions of individual subsystems, including gear pairs, propshaft, control arms and axle tube, in free-free state as sequential building blocks to synthesize the complete system NVH response. Using an existing driveline design, the salient features of this substructuring approach is demonstrated. Specifically, the synthesized results for the pinion-propshaft assembly and complete vehicle system are presented. The predictions are seen to be in excellent agreement with the experimental data from direct vehicle measurements.
Technical Paper

Identifying Alternative Movement Techniques from Existing Motion Data: An Empirical Performance Evaluation

2004-06-15
2004-01-2177
A manual task can be performed based on alternative movement techniques. Ergonomic human motion simulation requires consideration of alternative movement techniques, because they could bring different biomechanical, physiological, and psychophysical consequences. A method for identifying movement techniques from existing motion data was developed. The method is based on a JCV (Joint Contribution Vector) index and statistical clustering. A JCV quantifies a motion's underlying movement technique by computing contributions of individual body joint DOFs (degree-of-freedom) to the achievement of the task goal. Given a set of motions (motion capture data) achieving the same or similar task goals, alternative movement techniques can be identified by 1) representing the motions in terms of JCV and 2) performing a statistical clustering analysis. Performance of this movement technique identification method was evaluated based on a set of stoop and squat lifting motions.
Technical Paper

Fatigue Damage and Dynamic Natural Frequency Response of Spot-Welded Joints

2003-03-03
2003-01-0695
The changes of dynamic frequency response, commonly used to determine the dynamic characteristic of built-up structures, were studied over the entire fatigue failure process for tensile-shear spot-welded joints. The results of an experimental study showed that the natural frequency varies non-linearly with the fatigue damage fraction. This behavior was modeled using finite element analysis of a progressively growing crack, initiating at the joining surface, then progressing to the outside surface of the specimen, and finally extending from the spot weld nugget. The relationship between dynamic frequency response and crack propagation may be applied to study effect of aging (high mileage) in NVH quality.
Technical Paper

Development of a New Damping Matrices Identification Method and Its Applications

2001-04-30
2001-01-1407
An experimental method to identify damping characteristics of a dynamic system is reported. The method identifies damping matrices of the equation of motion of the system from measured frequency response functions, each different damping mechanism in a distinct matrix. Related experimental techniques and signal processing issues are discussed. Theoretical validation and error study are conducted by applying the method to a theoretical example. The method is applied experimentally to a thin beam with two different damping characteristics for experimental validation and demonstration of the method. Important advantages of the method over existing methods are explained.
Technical Paper

A Dynamometer for Automobile Brake Squeal Study

2001-04-30
2001-01-1599
Automobile brake squeal has been experimentally studied in many ways over the past 65 years. A large body of published research and a substantial amount of unpublished work have attempted to experimentally define the variables involved with and describe the system dynamics initiating the friction-induced self-excited vibration. Much of this work has centered on pin on disk type test rigs used to characterize the contact mechanics and/or friction laws without considering the brake system influence. This paper describes a dynamometer designed and constructed to study brake squeal on a system level.
Technical Paper

Human Centered Manufacturing: a Necessity for Enhancing Productivity and Competitiveness

1999-04-20
1999-01-1605
This paper argues in favor of a human-centered (anthropocentric) approach to modern manufacturing. The bases for these arguments are: (a) worker deskilling and creativity issues, (b) economics, and (c) unresolved problems in automation, such as software reliance and costs. Detailed arguments are avoided owing to space limitations. Finally, some issues confronting human-centered manufacturing are raised.
Technical Paper

Noise Source Identification in a Highly Reverberant Enclosure by Inverse Frequency Response Function Method: Numerical Feasibility Study

1997-05-20
971956
In highly reverberant enclosures, the identification of noise sources is a difficult and time consuming task. One effective approach is the Inverse Frequency Response Function (IFRF) method. This technique uses the inverse of an acoustic FRF matrix, that when multiplied by operating pressure response data reveals the noise source locations. Under highly reverberant conditions the deployment of a sound absorbing body is especially useful in reducing the effects of resonant modes that obscure important information in the FRFs. Without the absorption, the IFRF method becomes practically difficult to perform in these environments due to poor conditioning of the FRF matrix. This study investigates the feasibility of using Boundary Element and Finite Element Methods to establish the frequency response functions between selected panel points and microphones in the array.
Technical Paper

Practical Aspects of Perturbed Boundry Condition (PBC) Finite Element Model Updating Techniques

1997-05-20
971958
The perturbed boundary condition (PBC) model updating procedure has been developed to correct the finite element model [1]. The use of additional structural configurations adds more experimental information about the system and so better updating results can be expected. While it works well for simulated examples, practical limitations and additional requirements arise when it is used to update engineering structures. In this paper, the merits and the practical limitations of the techmques will be discussed in depth through the updating of a simulated system where the “measured” data is generated by computer and a real test structure where the experimentally measured data is noisy and distorted due to leakage. Useful suggestions and recommendations are drawn to guide the model updating of practical engineering structures.
Technical Paper

Time Scale Re-Sampling to Improve Transient Event Averaging

1997-05-20
972005
As the drive to make automobiles more noise and vibration free continues, it has become necessary to analyze transient events as well as periodic and random phenomena. Averaging of transient events requires a repeatable event as well as an available trigger event. Knowing the exact event time, the data can be post-processed by re-sampling the time scale to capture the recorded event at the proper instant in time to allow averaging. Accurately obtaining the event time is difficult given the sampling restrictions of current data acquisition hardware. This paper discusses the ideal hardware needed to perform this type of analysis, and provides analytical examples showing the transient averaging improvements using time scale re-sampling. These improvements are applied to noise source identification of a single transient event using an arrayed microphone technique. With this technique, the averaging is performed using time delays between potential sources and microphones in the array.
X