Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

An Analysis of Droplets and Ambient Air Interaction in a D.I. Gasoline Spray Using LIF-PIV Technique

2002-03-04
2002-01-0743
Measurements of the droplet and ambient air velocities in and around a D.I. gasoline spray were made by combining the laser induced fluorescence (LIF) and the particle image velocimetry (PIV) techniques. Before the fuel spray was injected into a constant volume vessel, rhodamine B-water solution was injected into the ambient air by a swirl-type injector for dispersing the fine fluorescent liquid particles as tracers for the ambient air motion. The fuel spray was injected into the fluorescent tracer clouds by a D.I. gasoline injector and was illuminated by an Nd:YAG laser light sheet (wave length: 532 nm). The light scattered by the droplets in the fuel spray was the same as the Nd:YAG laser wavelength, whereas the light emitted by the fluorescent tracer clouds was at a longer wavelength.
Technical Paper

3-D PIV Analysis of Structural Behavior of D.I. Gasoline Spray

2001-09-24
2001-01-3669
Three-dimensional behaviors of direct injection (D.I.) gasoline sprays were investigated using 2-D and 3-D particle image velocimetry (PIV) techniques. The fuel was injected with a swirl type injector for D.I. gasoline engines into a constant volume chamber in which ambient pressure was varied from 0.1 to 0.4 MPa at room temperature. The spray was illuminated by a laser light sheet generated by a double-pulsed Nd:YAG laser (wave length: 532 nm) and the succeeding two tomograms of the spray were taken by a high-resolution CCD camera. The 2-D and 3-D velocity distributions of the droplet cloud in the spray were calculated from these tomograms by using the PIV technique. The effects of the swirl groove flows in the injector and the ambient pressure on the structural behavior of the droplet cloud in the spray were also examined.
X