Refine Your Search

Topic

Search Results

Viewing 1 to 17 of 17
Technical Paper

Estimating How Long In-Vehicle Tasks Take: Static Data for Distraction and Ease-of-Use Evaluations

2024-04-09
2024-01-2505
Often, when assessing the distraction or ease of use of an in-vehicle task (such as entering a destination using the street address method), the first question is “How long does the task take on average?” Engineers routinely resolve this question using computational models. For in-vehicle tasks, “how long” is estimated by summing times for the included task elements (e.g., decide what to do, press a button) from SAE Recommended Practice J2365 or now using new static (while parked) data presented here. Times for the occlusion conditions in J2365 and the NHTSA Distraction Guidelines can be determined using static data and Pettitt’s Method or Purucker’s Method. These first approximations are reasonable and can be determined quickly. The next question usually is “How likely is it that the task will exceed some limit?”
Journal Article

Estimates of In-Vehicle Task Element Times for Usability and Distraction Evaluations

2023-04-11
2023-01-0789
Engaging in visual-manual tasks such as selecting a radio station, adjusting the interior temperature, or setting an automation function can be distracting to drivers. Additionally, if setting the automation fails, driver takeover can be delayed. Traditionally, assessing the usability of driver interfaces and determining if they are unacceptably distracting (per the NHTSA driver distraction guidelines and SAE J2364) involves human subject testing, which is expensive and time-consuming. However, most vehicle engineering decisions are based on computational analyses, such as the task time predictions in SAE J2365. Unfortunately, J2365 was developed before touch screens were common in motor vehicles.
Technical Paper

Evaluation of Strain Rate-Sensitive Constitutive Models for Simulation of Servo Stamping: Part 1 Theory

2020-10-01
2020-01-5073
Strain-rate sensitivity has been neglected in the simulation of the traditional stamping process because the strain rate typically does not significantly impact the forming behavior of sheet metals in such a quasi-static process, and traditional crank or link mechanical presses lack the flexibility of slide motion. However, the recent application of servo drive presses in stamping manifests improvement in formability and reduction of springback, besides increased productivity and energy savings. An accurate simulation of servo stamping entails constitutive models with strain-rate sensitivity. This study evaluated a few strain rate-sensitive models including the power-law model, the linear power-law model, the Johnson-Cook model, and the Cowper-Symonds model through the exercise of fitting these models to the experimental data of a deep draw quality (DDQ) steel.
Technical Paper

Warpage Prediction on Injection Molded Semi-Crystalline Thermoplastics

2018-04-03
2018-01-0149
Warpage is the distortion induced by inhomogeneous shrinkage during injection molding of plastic parts. Uncontrolled warpage will result in dimensional instability and bring a lot of challenges to the mold design and part assembly. Current commercial simulation software for injection molding cannot provide consistently accurate warpage prediction, especially for semi-crystalline thermoplastics. In this study, the root cause of inconsistency in warpage prediction has been investigated by using injection molded polypropylene plaques with a wide range of process conditions. The warpage of injection molded plaques are measured and compared to the numerical predictions from Moldex3D. The study shows that with considering cooling rate effect on crystallization kinetics and using of the improved material model for residual stress calculations, good agreements are obtained between experiment and simulation results.
Journal Article

Study on Fatigue Behaviors of Porous T300/924 Carbon Fiber Reinforced Polymer Unidirectional Laminates

2017-03-28
2017-01-0223
Morphological features of voids were characterized for T300/924 12-ply and 16-ply composite laminates at different porosity levels through the implementation of a digital microscopy (DM) image analysis technique. The composite laminates were fabricated through compression molding. Compression pressures of 0.1MPa, 0.3MPa, and 0.5MPa were selected to obtain composite plaques at different porosity levels. Tension-tension fatigue tests at load ratio R=0.1 for composite laminates at different void levels were conducted, and the dynamic stiffness degradation during the tests was monitored. Fatigue mechanisms were then discussed based on scanning electron microscope (SEM) images of the fatigue fracture surfaces. The test results showed that the presence of voids in the matrix has detrimental effects on the fatigue resistance of the material, depending on the applied load level.
Journal Article

Optimization of Spatially Varying Fiber Paths for a Symmetric Laminate with a Circular Cutout under Remote Uniaxial Tension

2015-09-15
2015-01-2609
Minimizing the stress concentrations around cutouts in a plate is often a design problem, especially in the Aerospace industry. A problem of optimizing spatially varying fiber paths in a symmetric, linear orthotropic composite laminate with a cutout, so as to achieve minimum stress concentration under remote unidirectional tensile loading is of interest in this study. A finite element (FE) model is developed to this extent, which constraints the fiber angles while optimizing the fiber paths, proving essential in manufacturing processes. The idea to be presented could be used to derive fiber paths that would drastically reduce the Stress Concentration Factor (SCF) in a symmetric laminate by using spatially varying fibers in place of unidirectional fibers. The model is proposed for a four layer symmetric laminate, and can be easily reproduced for any number of layers.
Technical Paper

Experimental Evaluation of the Quench Rate of AA7075

2014-04-01
2014-01-0984
The aluminum alloy 7075-T6 has the potential to be used for structural automotive body components as an alternative to boron steel. Although this alloy shows poor formability at room temperature, it has been demonstrated that hot stamping is a feasible sheet metal process that can be used to overcome the forming issues. Hot stamping is an elevated temperature forming operation in which a hot blank is formed and quenched within a stamping die. Attaining a high quench rate is a critical step of the hot stamping process and corresponds to maximum strength and corrosion resistance. This work looks at measuring the quench rate of AA7075-T6 by way of three different approaches: water, a water-cooled plate, and a bead die. The water-cooled plate and the bead die are laboratory-scale experimental setups designed to replicate the hot stamping/die quenching process.
Technical Paper

Sandwich Panels with Corrugated Core - A Lightweighting Concept with Improved Stiffness

2014-04-01
2014-01-0808
Sandwich panels with high modulus/high strength skin material and low density/low modulus core material have higher stiffness-to-weight ratio than monolithic panels. In this paper, sandwich panels with corrugated core are explored as a lightweighting concept for improved stiffness. The skin and the core materials are a high strength steel, aluminum alloy or carbon fiber-epoxy composite. The core has a triangular corrugation, a trapezoidal corrugation and a rectangular corrugation. The stiffness of the sandwich panels is analytically determined and compared with monolithic panels of equal mass. It is shown that the stiffness of the sandwich panels is 5 to 7 times higher than that of the monolithic panels.
Journal Article

Energy Finite Element Analysis Developments for Vibration Analysis of Composite Aircraft Structures

2011-05-17
2011-01-1734
The Energy Finite Element Analysis (EFEA) has been utilized successfully for modeling complex structural-acoustic systems with isotropic structural material properties. In this paper, a formulation for modeling structures made out of composite materials is presented. An approach based on spectral finite element analysis is utilized first for developing the equivalent material properties for the composite material. These equivalent properties are employed in the EFEA governing differential equations for representing the composite materials and deriving the element level matrices. The power transmission characteristics at connections between members made out of non-isotropic composite material are considered for deriving suitable power transmission coefficients at junctions of interconnected members. These coefficients are utilized for computing the joint matrix that is needed to assemble the global system of EFEA equations.
Journal Article

Development and Validation of an Analytical Seal Bead Design Model for Automotive Superplastic Forming

2010-04-12
2010-01-0979
With the increasing demand for fuel efficient vehicles, technologies like superplastic forming (SPF) are being developed and implemented to allow for the utilization of lightweight automotive sheet materials. While forming under superplastic conditions leads to increased formability in lightweight alloys, such as aluminum, the slower forming times required by the technology can limit the technology to low to mid production levels. One problem that can increase forming time is the reduction of forming pressure due to pressurizing (forming) gas leaks, during the forming cycle, at the die/sheet/blankholder interface. Traditionally, such leaks have been successfully addressed through the use of a seal bead. However, for advanced die technologies that result in reduced cycle times (such as hot draw mechanical performing, which combine aspects of mechanical preforming of the sheet metal followed by SPF), the use of seal beads can restrict the drawing of sheet material into the forming die.
Journal Article

Diesel EGR Cooler Fouling

2008-10-06
2008-01-2475
The buildup of deposits in EGR coolers causes significant degradation in heat transfer performance, often on the order of 20-30%. Deposits also increase pressure drop across coolers and thus may degrade engine efficiency under some operating conditions. It is unlikely that EGR cooler deposits can be prevented from forming when soot and HC are present. The presence of cooled surfaces will cause thermophoretic soot deposition and condensation of HC and acids. While this can be affected by engine calibration, it probably cannot be eliminated as long as cooled EGR is required for emission control. It is generally felt that “dry fluffy” soot is less likely to cause major fouling than “heavy wet” soot. An oxidation catalyst in the EGR line can remove HC and has been shown to reduce fouling in some applications. The combination of an oxidation catalyst and a wall-flow filter largely eliminates fouling. Various EGR cooler designs affect details of deposit formation.
Technical Paper

Development of an Adaptive Workload Management System using Queueing Network-Model Human Processor (QN-MHP)

2008-04-14
2008-01-1251
The chance of vehicle collisions significantly increases when drivers are overloaded with information from in-vehicle systems. Developing adaptive workload management systems (AWMS) to dynamically control the rate of messages from these in-vehicle systems is one of the solutions to this problem. However, existing AWMSs do not use a model of driver cognitive system to estimate workload and only suppress or redirect in-vehicle system messages, without changing their rate based on driver workload. In this work, we propose a prototype of a new adaptive workload management system (QN-MHP AWMS) and it includes: a queueing network model of driver workload (Wu & Liu, In Press) that estimates driver workload in different driving situations, and a message controller that determines the optimal delay times between messages and dynamically controls the rate of messages presented to drivers.
Technical Paper

Innovative Composite Structure Design for Blast Protection

2007-04-16
2007-01-0483
An advanced design methodology is developed for innovative composite structure concepts which can be used in the Army's future ground vehicle systems to protect vehicle and occupants against various explosives. The multi-level and multi-scenario blast simulation and design system integrates three major technologies: a newly developed landmine-soil-composite interaction model; an advanced design methodology, called Function-Oriented Material Design (FOMD); and a novel patent-pending composite material concept, called BTR (Biomimetic Tendon-Reinforced) material. Example results include numerical simulation of a BTR composite under a blast event. The developed blast simulation and design system will enable the prediction, design, and prototyping of blast-protective composite structures for a wide range of damage scenarios in various blast events.
Technical Paper

Permanent Mold Casting and Creep Behavior of Mg - 4 Al - 4 X: (Ca, Ce, La, Sr) Alloys

2007-04-16
2007-01-1027
Creep-resistant magnesium alloys for automotive powertrain applications offer significant potential for vehicle weight reduction. In this study permanent mold casting, microstructure and creep behavior have been investigated for a series of ternary magnesium alloys (Mg-4Al-4X (X: Ca, Ce, La, Sr) wt%) and AXJ530 (Mg-5Al-3Ca-0.15Sr, wt%). A permanent mold was instrumented with twelve thermocouples and mold temperature was monitored during the casting process. Average mold temperature increased from 200°C to 400°C during a typical alloy casting series (fifteen to twenty castings). The cast microstructure for all alloys consists of primary α-Mg globular phase surrounded by eutectic structure which is composed of intermetallic(s) and α-Mg magnesium phases. The primary cell size of the AXJ530 increased from 18 to 24 μm with increasing mold temperature and a similar trend is expected for all alloys.
Technical Paper

Failure Prediction of Sheet Metals Based on an Anisotropic Gurson Model

2000-03-06
2000-01-0766
A failure prediction methodology that can predict sheet metal failure under arbitrary deformation histories including rotating principal stretch directions and bending/unbending with consideration of damage evolution is reviewed in this paper. An anisotropic Gurson yield criterion is adopted to characterize the effects of microvoids on the load carrying capacity of sheet metals where Hill’s quadratic anisotropic yield criterion is used to describe the matrix normal anisotropy and planar isotropy. The evolution of the void damage is based on the growth, nucleation and coalescence of microvoids. Mroz’s anisotropic hardening rule, which was proposed based on the cyclic plastic behavior of metals observed in experiments, is generalized to characterize the anisotropic hardening behavior due to loading/unloading with consideration of the evolution of void volume fraction. The effects of yield surface curvature are also included in the plasticity model.
Technical Paper

Influence of Textures on Sheet Forming

2000-03-06
2000-01-0771
This paper reviews the relationship of the anisotropy of plastic behavior of sheet metal to crystallographic textures and the effect of anisotropic plastic behavior on sheet forming processes Although the basis is crystallographic, the anisotropy of cubic metals can be approximated by a continuum yield criterion. Use of this criterion in analyses of sheet forming gives better results than the usual quadratic criterion.
Technical Paper

A Knowledge Representation Scheme for Nondestructive Testing of Composite Components

1990-02-01
900070
This paper presents our efforts to formalize the knowledge domain of nondestructive quality control of automotive composite components with organic (resin) matrices and to develop a prototype knowledge-based system, called NICC for Nondestructive Inspection of Composite Components, to help in the quality assurance of individual components. Geometric and bonding characteristics of parts and assemblies are taken into account, as opposed to the better understood evaluation of test specimens. The reasoning process was divided in two stages: in the first stage all flaws that might be present in the given part are characterized; in the second stage appropriate nondestructive testing procedures are specified to detect each of the possible flaws. The use of nondestructive techniques in the inspection of composites is fairly recent and hence, the knowledge required to develop an expert system is still very scattered and not fully covered in the literature.
X