Refine Your Search

Topic

Author

Search Results

Technical Paper

Estimating How Long In-Vehicle Tasks Take: Static Data for Distraction and Ease-of-Use Evaluations

2024-04-09
2024-01-2505
Often, when assessing the distraction or ease of use of an in-vehicle task (such as entering a destination using the street address method), the first question is “How long does the task take on average?” Engineers routinely resolve this question using computational models. For in-vehicle tasks, “how long” is estimated by summing times for the included task elements (e.g., decide what to do, press a button) from SAE Recommended Practice J2365 or now using new static (while parked) data presented here. Times for the occlusion conditions in J2365 and the NHTSA Distraction Guidelines can be determined using static data and Pettitt’s Method or Purucker’s Method. These first approximations are reasonable and can be determined quickly. The next question usually is “How likely is it that the task will exceed some limit?”
Journal Article

Estimates of In-Vehicle Task Element Times for Usability and Distraction Evaluations

2023-04-11
2023-01-0789
Engaging in visual-manual tasks such as selecting a radio station, adjusting the interior temperature, or setting an automation function can be distracting to drivers. Additionally, if setting the automation fails, driver takeover can be delayed. Traditionally, assessing the usability of driver interfaces and determining if they are unacceptably distracting (per the NHTSA driver distraction guidelines and SAE J2364) involves human subject testing, which is expensive and time-consuming. However, most vehicle engineering decisions are based on computational analyses, such as the task time predictions in SAE J2365. Unfortunately, J2365 was developed before touch screens were common in motor vehicles.
Technical Paper

Evaluation of Strain Rate-Sensitive Constitutive Models for Simulation of Servo Stamping: Part 1 Theory

2020-10-01
2020-01-5073
Strain-rate sensitivity has been neglected in the simulation of the traditional stamping process because the strain rate typically does not significantly impact the forming behavior of sheet metals in such a quasi-static process, and traditional crank or link mechanical presses lack the flexibility of slide motion. However, the recent application of servo drive presses in stamping manifests improvement in formability and reduction of springback, besides increased productivity and energy savings. An accurate simulation of servo stamping entails constitutive models with strain-rate sensitivity. This study evaluated a few strain rate-sensitive models including the power-law model, the linear power-law model, the Johnson-Cook model, and the Cowper-Symonds model through the exercise of fitting these models to the experimental data of a deep draw quality (DDQ) steel.
Technical Paper

Innovative Additive Manufacturing Process for Successful Production of 7000 Series Aluminum Alloy Components Using Smart Optical Monitoring System

2020-04-14
2020-01-1300
Aircraft components are commonly produced with 7000 series aluminum alloys (AA) due to its weight, strength, and fatigue properties. Auto Industry is also choosing more and more aluminum component for weight reduction. Current additive manufacturing (AM) methods fall short of successfully producing 7000 series AA due to the reflective nature of the material along with elements with low vaporization temperature. Moreover, lacking in ideal thermal control, print inherently defective products with such issues as poor surface finish alloying element loss and porosity. All these defects contribute to reduction of mechanical strength. By monitoring plasma with spectroscopic sensors, multiple information such as line intensity, standard deviation, plasma temperature or electron density, and by using different signal processing algorithm, AM defects have been detected and classified.
Journal Article

Failure Mode and Fatigue Behavior of Flow Drill Screw Joints in Lap-Shear Specimens of Aluminum 6082-T6 Sheets Made with Different Processing Conditions

2018-04-03
2018-01-1237
Failure mode and fatigue behavior of flow drill screw (FDS) joints in lap-shear specimens of aluminum 6082-T6 sheets made with different processing conditions are investigated based on the experimental results and a structural stress fatigue life estimation model. Lap-shear specimens with FDS joints without clearance hole and lap-shear specimens with stripped FDS joints with clearance hole were made and then tested under quasi-static and cyclic loading conditions. Optical micrographs show the failure modes of the FDS joints without clearance hole (with gap) and the stripped FDS joints with clearance hole under quasi-static and cyclic loading conditions. The fatigue failure mode of the FDS joints without clearance hole (with gap) in lap-shear specimens is similar to those with clearance hole. The fatigue lives of lap-shear specimens with FDS joints without clearance hole are lower than those with clearance hole for given load ranges under cyclic loading conditions.
Technical Paper

Mechanical Strength and Failure Mode of Flow Drill Screw Joints in Coach-Peel Specimens of Aluminum 6082-T6 Sheets of Different Thicknesses and Processing Conditions

2018-04-03
2018-01-0116
The mechanical strength and failure mode of flow drill screw (FDS) joints in coach-peel specimens of aluminum 6082-T6 sheets of three different thicknesses of 2.5, 2.8 and 3.0 mm and three different processing conditions under quasi-static loading conditions are investigated by experiments. The experimental results indicate that the mechanical strength and failure mode of FDS joints in coach-peel specimens are affected by the specimen thickness, clearance hole and stripping. The maximum load of a coach-peel specimen with an FDS joint with clearance hole increases as the thickness increases. For each of the thickness groups of 2.5, 2.8 and 3.0 mm, the maximum load of a coach-peel specimen with an FDS joint without clearance hole is lower than that with clearance hole. For the thickness group of 2.8 mm, the maximum load of a coach-peel specimen with a stripped FDS joint with clearance hole is lower than those of non-stripped ones with and without clearance hole.
Technical Paper

Warpage Prediction on Injection Molded Semi-Crystalline Thermoplastics

2018-04-03
2018-01-0149
Warpage is the distortion induced by inhomogeneous shrinkage during injection molding of plastic parts. Uncontrolled warpage will result in dimensional instability and bring a lot of challenges to the mold design and part assembly. Current commercial simulation software for injection molding cannot provide consistently accurate warpage prediction, especially for semi-crystalline thermoplastics. In this study, the root cause of inconsistency in warpage prediction has been investigated by using injection molded polypropylene plaques with a wide range of process conditions. The warpage of injection molded plaques are measured and compared to the numerical predictions from Moldex3D. The study shows that with considering cooling rate effect on crystallization kinetics and using of the improved material model for residual stress calculations, good agreements are obtained between experiment and simulation results.
Journal Article

Study on Fatigue Behaviors of Porous T300/924 Carbon Fiber Reinforced Polymer Unidirectional Laminates

2017-03-28
2017-01-0223
Morphological features of voids were characterized for T300/924 12-ply and 16-ply composite laminates at different porosity levels through the implementation of a digital microscopy (DM) image analysis technique. The composite laminates were fabricated through compression molding. Compression pressures of 0.1MPa, 0.3MPa, and 0.5MPa were selected to obtain composite plaques at different porosity levels. Tension-tension fatigue tests at load ratio R=0.1 for composite laminates at different void levels were conducted, and the dynamic stiffness degradation during the tests was monitored. Fatigue mechanisms were then discussed based on scanning electron microscope (SEM) images of the fatigue fracture surfaces. The test results showed that the presence of voids in the matrix has detrimental effects on the fatigue resistance of the material, depending on the applied load level.
Technical Paper

A Structural Stress Recovery Procedure for Fatigue Life Assessment of Welded Structures

2017-03-28
2017-01-0343
Over the decades, several attempts have been made to develop new fatigue analysis methods for welded joints since most of the incidents in automotive structures are joints related. Therefore, a reliable and effective fatigue damage parameter is needed to properly predict the failure location and fatigue life of these welded structures to reduce the hardware testing, time, and the associated cost. The nodal force-based structural stress approach is becoming widely used in fatigue life assessment of welded structures. In this paper, a new nodal force-based structural stress recovery procedure is proposed that uses the least squares method to linearly smooth the stresses in elements along the weld line. Weight function is introduced to give flexibility in choosing different weighting schemes between elements. Two typical weighting schemes are discussed and compared.
Technical Paper

A Comparative Study of Two RVE Modelling Methods for Chopped Carbon Fiber SMC

2017-03-28
2017-01-0224
To advance vehicle lightweighting, chopped carbon fiber sheet molding compound (SMC) is identified as a promising material to replace metals. However, there are no effective tools and methods to predict the mechanical property of the chopped carbon fiber SMC due to the high complexity in microstructure features and the anisotropic properties. In this paper, a Representative Volume Element (RVE) approach is used to model the SMC microstructure. Two modeling methods, the Voronoi diagram-based method and the chip packing method, are developed to populate the RVE. The elastic moduli of the RVE are calculated and the two methods are compared with experimental tensile test conduct using Digital Image Correlation (DIC). Furthermore, the advantages and shortcomings of these two methods are discussed in terms of the required input information and the convenience of use in the integrated processing-microstructure-property analysis.
Journal Article

Stress-Strain Relations for Nodular Cast Irons with Different Graphite Volume Fractions under Tension and Compression

2017-03-28
2017-01-0399
In this paper, the results of finite element analyses for nodular cast irons with different volume fractions of graphite particles based on an axisymmetric unit cell model under uniaxial compression and tension are presented. The experimental compressive stress-strain data for a nodular cast iron with the volume fraction of graphite particles of 4.5% are available for use as the baseline material data. The elastic-plastic stress-strain relation for the matrix of the cast iron is estimated based on the experimental compressive stress-strain curve of the cast iron with the rule of mixture. The elastic-plastic stress-strain relation for graphite particles is obtained from the literature. The compressive stress-strain curve for the cast iron based on the axisymmetric unit cell model with the use of the von Mises yield function was then obtained computationally and compared well with the compressive stress-strain relation obtained from the experiment.
Technical Paper

Fatigue Life Prediction for Adaptable Insert Welds between Sheet Steel and Cast Magnesium Alloy

2016-04-05
2016-01-0392
Joining technology is a key factor to utilize dissimilar materials in vehicle structures. Adaptable insert weld (AIW) technology is developed to join sheet steel (HSLA350) to cast magnesium alloy (AM60) and is constructed by combining riveting technology and electrical resistance spot welding technology. In this project, the AIW joint technology is applied to construct front shock tower structures composed with HSLA350, AM60, and Al6082 and a method is developed to predict the fatigue life of the AIW joints. Lap-shear and cross-tension specimens were constructed and tested to develop the fatigue parameters (load-life curves) of AIW joint. Two FEA modeling techniques for AIW joints were used to model the specimen geometry. These modeling approaches are area contact method (ACM) and TIE contact method.
Technical Paper

Fatigue Life Prediction of Friction Stir Linear Welds for Magnesium Alloys

2016-04-05
2016-01-0386
Friction stir linear welding (FSLW) is widely used in joining lightweight materials including aluminum alloys and magnesium alloys. However, fatigue life prediction method for FSLW is not well developed yet for vehicle structure applications. This paper is tried to use two different methods for the prediction of fatigue life of FSLW in vehicle structures. FSLW is represented with 2-D shell elements for the structural stress approach and is represented with TIE contact for the maximum principal stress approach in finite element (FE) models. S-N curves were developed from coupon specimen test results for both the approaches. These S-N curves were used to predict fatigue life of FSLW of a front shock tower structure that was constructed by joining AM60 to AZ31 and AM60 to AM30. The fatigue life prediction results were then correlated with test results of the front shock tower structures.
Journal Article

A Fatigue Life Prediction Method of Laser Assisted Self-Piercing Rivet Joint for Magnesium Alloys

2015-04-14
2015-01-0537
Due to magnesium alloy's poor weldability, other joining techniques such as laser assisted self-piercing rivet (LSPR) are used for joining magnesium alloys. This research investigates the fatigue performance of LSPR for magnesium alloys including AZ31 and AM60. Tensile-shear and coach peel specimens for AZ31 and AM60 were fabricated and tested for understanding joint fatigue performance. A structural stress - life (S-N) method was used to develop the fatigue parameters from load-life test results. In order to validate this approach, test results from multijoint specimens were compared with the predicted fatigue results of these specimens using the structural stress method. The fatigue results predicted using the structural stress method correlate well with the test results.
Journal Article

Failure Mode and Fatigue Behavior of Dissimilar Laser Welds in Lap-Shear Specimens of Low Carbon Steel and HSLA Steel Sheets

2015-04-14
2015-01-0706
In this paper, failure modes of dissimilar laser welds in lap-shear specimens of low carbon steel and high strength low alloy (HSLA) steel sheets are investigated based on experimental observations. Micro-hardness tests across the weld zones of dissimilar laser welds were conducted. The hardness values of the fusion zones and heat affected zones are significantly higher than those of the base metals. The fatigue lives and the corresponding failure modes of laser welds as functions of the load ranges are then examined. Optical micrographs of the laser welds before and after failure under quasi-static and cyclic loading conditions are then examined. The failure modes and fatigue behaviors of the laser welds under different loading conditions are different. Under quasi-static loading conditions, a necking failure occurred in the upper low carbon steel sheet far away from the laser weld.
Journal Article

Stress Intensity Factor Solutions for Dissimilar Welds in Lap-Shear Specimens of Steel, Magnesium, Aluminum and Copper Sheets

2015-04-14
2015-01-1754
In this paper, the analytical stress intensity factor and J integral solutions for welds in lap-shear specimens of two dissimilar sheets based on the beam bending theory are first reviewed. The solutions are then presented in the normalized forms. Next, two-dimensional finite element analyses were selectively conducted to validate the analytical solutions based on the beam bending theory. The interface crack parameters, the stress intensity factor solutions, and the J integral solutions for welds in lap-shear specimens of different combinations of steel, aluminum, and magnesium, and the combination of aluminum and copper sheets of different thickness ratios are then presented for convenient fracture and fatigue analyses. The transition thickness ratios for critical crack locations for different combinations of dissimilar materials are then determined from the analytical solutions.
Technical Paper

Experimental Evaluation of the Quench Rate of AA7075

2014-04-01
2014-01-0984
The aluminum alloy 7075-T6 has the potential to be used for structural automotive body components as an alternative to boron steel. Although this alloy shows poor formability at room temperature, it has been demonstrated that hot stamping is a feasible sheet metal process that can be used to overcome the forming issues. Hot stamping is an elevated temperature forming operation in which a hot blank is formed and quenched within a stamping die. Attaining a high quench rate is a critical step of the hot stamping process and corresponds to maximum strength and corrosion resistance. This work looks at measuring the quench rate of AA7075-T6 by way of three different approaches: water, a water-cooled plate, and a bead die. The water-cooled plate and the bead die are laboratory-scale experimental setups designed to replicate the hot stamping/die quenching process.
Technical Paper

NH3 Storage in Sample Lines

2014-04-01
2014-01-1586
Ammonia, often present in exhaust gas samples, is a polar molecule gas that interacts with walls of the gas sampling and analysis equipment resulting in delayed instrument response. A set of experiments quantified various materials and process parameters of a heated sample line system for ammonia (NH3) response using a Fourier Transform infrared spectrometer (FTIR). Response attenuation rates are due to mixing and diffusion during transport as well as NH3 wall storage. Mixing/diffusion effects cause attenuation with a time constant 1-10 seconds. Wall storage attenuation has a time constant 10-200 seconds. The effects of sample line diameter and length, line temperature, line material, hydrated versus dry gas, and flow rate were examined. All of these factors are statistically significant to variation of at least one of the time constants. The NH3 storage on the sample system walls was calculated as a function of the experimental test as well.
Technical Paper

Sandwich Panels with Corrugated Core - A Lightweighting Concept with Improved Stiffness

2014-04-01
2014-01-0808
Sandwich panels with high modulus/high strength skin material and low density/low modulus core material have higher stiffness-to-weight ratio than monolithic panels. In this paper, sandwich panels with corrugated core are explored as a lightweighting concept for improved stiffness. The skin and the core materials are a high strength steel, aluminum alloy or carbon fiber-epoxy composite. The core has a triangular corrugation, a trapezoidal corrugation and a rectangular corrugation. The stiffness of the sandwich panels is analytically determined and compared with monolithic panels of equal mass. It is shown that the stiffness of the sandwich panels is 5 to 7 times higher than that of the monolithic panels.
Technical Paper

Effects of Pore Distributions on Ductility of Thin-Walled High Pressure Die-Cast Magnesium

2013-04-08
2013-01-0644
In this paper, a microstructure-based three-dimensional (3D) finite element modeling method is adopted to investigate the effects of porosity in thin-walled high pressure die-cast (HPDC) magnesium alloys on their ductility. For this purpose, the cross-sections of AM60 casting samples are first examined using optical microscope and X-ray tomography to obtain the general information on the pore distribution features. The experimentally observed pore distribution features are then used to generate a series of synthetic microstructure-based 3D finite element models with different pore volume fractions and pore distribution features. Shear and ductile damage models are adopted in the finite element analyses to induce the fracture by element removal, leading to the prediction of ductility.
X