Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Refinement and Validation of the Thermal Stratification Analysis: A post-processing methodology for determining temperature distributions in an experimental HCCI engine

2014-04-01
2014-01-1276
Refinements were made to a post-processing technique, termed the Thermal Stratification Analysis (TSA), that couples the mass fraction burned data to ignition timing predictions from the autoignition integral to calculate an apparent temperature distribution from an experimental HCCI data point. Specifically, the analysis is expanded to include all of the mass in the cylinder by fitting the unburned mass with an exponential function, characteristic of the wall-affected region. The analysis-derived temperature distributions are then validated in two ways. First, the output data from CFD simulations are processed with the Thermal Stratification Analysis and the calculated temperature distributions are compared to the known CFD distributions.
Technical Paper

A Framework for Optimization of the Traction Motor Design Based on the Series-HEV System Level Goals

2014-04-01
2014-01-1801
The fidelity of the hybrid electric vehicle simulation is increased with the integration of a computationally-efficient finite-element based electric machine model, in order to address optimization of component design for system level goals. In-wheel electric motors are considered because of the off-road military application which differs significantly from commercial HEV applications. Optimization framework is setup by coupling the vehicle simulation to the constrained optimization solver. Utilizing the increased design flexibility afforded by the model, the solver is able to reshape the electric machine's efficiency map to better match the vehicle operation points. As the result, the favorable design of the e-machine is selected to improve vehicle fuel economy and reduce cost, while satisfying performance constraints.
Technical Paper

Simulation Study of a Series Hydraulic Hybrid Propulsion System for a Light Truck

2007-10-30
2007-01-4151
The global energy situation, the dependence of the transportation sector on fossil fuels, and a need for rapid response to the global warming challenge, provide a strong impetus for development of fuel efficient vehicle propulsion. The task is particularly challenging in the case of trucks due to severe weight/size constraints. Hybridization is the only approach offering significant breakthroughs in near and mid-term. In particular, the series configuration decouples the engine from the wheels and allows full flexibility in controlling the engine operation, while the hydraulic energy conversion and storage provides exceptional power density and efficiency. The challenge stems from a relatively low energy density of the hydraulic accumulator, and this provides part of the motivation for a simulation-based approach to development of the system power management. The vehicle is based on the HMMWV platform, a 4×4 off-road truck weighing 5112 kg.
X