Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Computationally-Efficient Heat Convection Model for Electric Machines

2017-03-28
2017-01-0260
This paper presents a computationally-efficient model of heat convection due to air circulation produced by rotor motion in the air gap of an electric machine. The model calculates heat flux at the boundaries of the rotor and stator as a function of the rotor and stator temperatures and rotor speed. It is shown that, under certain assumptions, this mapping has the homogeneity property. This property, among others, is used to pose a structure for the proposed model. The coefficients of the model are then determined by fitting the model to the results of a commercial Computational Fluid Dynamics (CFD) simulation program. The accuracy of the new model is compared to the CFD results, shown an error of less than 0.3% over the studied operating range.
Technical Paper

A Hybrid Electric Vehicle Thermal Management System - Nonlinear Controller Design

2015-04-14
2015-01-1710
The components in a hybrid electric vehicle (HEV) powertrain include the battery pack, an internal combustion engine, and the electric machines such as motors and possibly a generator. These components generate a considerable amount of heat during driving cycles. A robust thermal management system with advanced controller, designed for temperature tracking, is required for vehicle safety and energy efficiency. In this study, a hybridized mid-size truck for military application is investigated. The paper examines the integration of advanced control algorithms to the cooling system featuring an electric-mechanical compressor, coolant pump and radiator fans. Mathematical models are developed to numerically describe the thermal behavior of these powertrain elements. A series of controllers are designed to effectively manage the battery pack, electric motors, and the internal combustion engine temperatures.
X