Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Extended Deep Learning Model to Predict the Electric Vehicle Motor Operating Point

2024-04-09
2024-01-2551
The transition from combustion engines to electric propulsion is accelerating in every coordinate of the globe. The engineers had strived hard to augment the engine performance for more than eight decades, and a similar challenge had emerged again for electric vehicles. To analyze the performance of the engine, the vector engine operating point (EOP) is defined, which is common industry practice, and the performance vector electric vehicle motor operating point (EVMOP) is not explored in the existing literature. In an analogous sense, electric vehicles are embedded with three primary components, e.g., Battery, Inverter, Motor, and in this article, the EVMOP is defined using the parameters [motor torque, motor speed, motor current]. As a second aspect of this research, deep learning models are developed to predict the EVMOP by mapping the parameters representing the dynamic state of the system in real-time.
Technical Paper

Estimating How Long In-Vehicle Tasks Take: Static Data for Distraction and Ease-of-Use Evaluations

2024-04-09
2024-01-2505
Often, when assessing the distraction or ease of use of an in-vehicle task (such as entering a destination using the street address method), the first question is “How long does the task take on average?” Engineers routinely resolve this question using computational models. For in-vehicle tasks, “how long” is estimated by summing times for the included task elements (e.g., decide what to do, press a button) from SAE Recommended Practice J2365 or now using new static (while parked) data presented here. Times for the occlusion conditions in J2365 and the NHTSA Distraction Guidelines can be determined using static data and Pettitt’s Method or Purucker’s Method. These first approximations are reasonable and can be determined quickly. The next question usually is “How likely is it that the task will exceed some limit?”
Technical Paper

Comprehensive Evaluation of Behavioral Competence of an Automated Vehicle Using the Driving Assessment (DA) Methodology

2024-04-09
2024-01-2642
With the development of vehicles equipped with automated driving systems, the need for systematic evaluation of AV performance has grown increasingly imperative. According to ISO 34502, one of the safety test objectives is to learn the minimum performance levels required for diverse scenarios. To address this need, this paper combines two essential methodologies - scenario-based testing procedures and scoring systems - to systematically evaluate the behavioral competence of AVs. In this study, we conduct comprehensive testing across diverse scenarios within a simulator environment following Mcity AV Driver Licensing Test procedure. These scenarios span several common real-world driving situations, including BV Cut-in, BV Lane Departure into VUT Path from Opposite Direction, BV Left Turn Across VUT Path, and BV Right Turn into VUT Path scenarios.
Technical Paper

Numerical Research on the Effects of Pre-Chamber Orifice Scheme on the Performance in a Large-Bore Natural Gas Engine

2023-10-31
2023-01-1631
Pre-chamber ignition is one of the advanced technologies to improve the combustion performance for lean combustion natural gas engine, which could achieve low NOx, simultaneously. The designing scheme of the orifices, which connects the pre-chamber and the main chamber, is the main challenge limiting the further improvement. In this work, the three-dimensional computational fluid dynamics calculation based on a four-stroke engine with 320 mm cylinder bore was conducted to investigate the effects of orifice structure on the combustion and NOx performance. The results show that the schemes with 7 and 9 orifices lead to the delayed high-temperature jets formation due to the asymmetrical airflow in the pre-chamber, which retards the ignition timing but enhances the combustion in the main chamber. The 6 orifices scheme leads to the insufficient distribution of the high-temperature jets, and the 10 orifices result in the serious interference between the adjacent high-temperature jets.
Technical Paper

Research on Design Development and Modification of a Steel Piston in a Heavy-Duty Diesel Engine

2023-04-24
2023-01-5023
The thermal and mechanical loads of the engine rise dramatically with the increase in engine power density, which places higher demands on the design of the piston. In this paper, the design development of a steel piston for a marine diesel engine belonging to 190 series heavy-duty diesel engines was studied. The design methods including material selection and structural design were used to finished the preliminary design. In the meanwhile, the design philosophies of the aluminum alloy piston and composite piston for the 190 series diesel engines were used for reference in the design process. The designed steel piston was tested in the engine durability bench test and simulated for reliability. The results showed that the failure of the steel piston occurred at the same position in both the test and the simulation. The cause of cracking in the steel piston was analyzed, and the insufficient strength of the local structure led to high-cycle fatigue failure.
Technical Paper

Numerical Study on High-Load Performance of a Two-Stage Boosted Poppet-Valved Two-stroke Diesel Engine

2023-04-11
2023-01-0443
Two-stroke cycle is one of the most effective methods to increase the torque and power output of a four-stroke engine due to the doubled firing frequency compared to four-stroke cycle at the same engine speed. As the two-stroke cycle lacks separate intake and exhaust strokes, the positive pressure difference between intake and exhaust ports is required to drive fresh charge into the cylinder, and is affected by intake port structures due to the different amounts of short-circuited fresh charge during scavenging process. To evaluate the effects of intake port structures on the high-load performance of a boosted poppet-valved two-stroke diesel engine, one-dimensional gas dynamic model and three-dimensional computational fluid dynamics model were established and used to predict the high-load performance of the boosted two-stroke diesel engine with top-entry intake ports, inclined side-entry intake ports, and side-entry intake ports, respectively.
Technical Paper

A Data-Driven Framework of Crash Scenario Typology Development for Child Vulnerable Road Users in the U.S.

2023-04-11
2023-01-0787
Motor vehicle crashes involving child Vulnerable Road Users (VRUs) remain a critical public health concern in the United States. While previous studies successfully utilized the crash scenario typology to examine traffic crashes, these studies focus on all types of motor vehicle crashes thus the method might not apply to VRU crashes. Therefore, to better understand the context and causes of child VRU crashes on the U.S. road, this paper proposes a multi-step framework to define crash scenario typology based on the Fatality Analysis Reporting System (FARS) and the Crash Report Sampling System (CRSS). A comprehensive examination of the data elements in FARS and CRSS was first conducted to determine elements that could facilitate crash scenario identification from a systematic perspective. A follow-up context description depicts the typical behavioral, environmental, and vehicular conditions associated with an identified crash scenario.
Technical Paper

The Effect of Exhaust Emission Conditions and Coolant Temperature on the Composition of Exhaust Gas Recirculation Cooler Deposits

2023-04-11
2023-01-0438
Exhaust Gas Recirculation (EGR) coolers are widely used on diesel engines to reduce in-cylinder NOx formation. A common problem is the accumulation of a fouling layer inside the heat exchanger, mainly due to thermophoresis that leads to deposition of particulate matter (PM), and condensation of hydrocarbons (HC) from the diesel exhaust. From a recent investigation of deposits from field samples of EGR coolers, it was confirmed that the densities of their deposits were much higher than reported in previous studies. In this study, the experiments were conducted in order to verify hypotheses about deposit growth, especially densification. An experimental set up which included a custom-made shell and tube type heat exchanger with six surrogate tubes was designed to control flow rate independently, and was installed on a 1.9 L L-4 common rail turbo diesel engine.
Journal Article

A Standard Set of Courses to Assess the Quality of Driving Off-Road Combat Vehicles

2023-04-11
2023-01-0114
Making manned and remotely-controlled wheeled and tracked vehicles easier to drive, especially off-road, is of great interest to the U.S. Army. If vehicles are easier to drive (especially closed hatch) or if they are driven autonomously, then drivers could perform additional tasks (e.g., operating weapons or communication systems), leading to reduced crew sizes. Further, poorly driven vehicles are more likely to get stuck, roll over, or encounter mines or improvised explosive devices, whereby the vehicle can no longer perform its mission and crew member safety is jeopardized. HMI technology and systems to support human drivers (e.g., autonomous driving systems, in-vehicle monitors or head-mounted displays, various control devices (including game controllers), navigation and route-planning systems) need to be evaluated, which traditionally occurs in mission-specific (and incomparable) evaluations.
Technical Paper

An In-Cylinder Imaging Study of Pre-chamber Spark-Plug Flame Development in a Single-Cylinder Direct-Injection Spark-Ignition Engine

2023-04-11
2023-01-0254
Prior work in the literature have shown that pre-chamber spark plug technologies can provide remarkable improvements in engine performance. In this work, three passively fueled pre-chamber spark plugs with different pre-chamber geometries were investigated using in-cylinder high-speed imaging of spectral emission in the visible wavelength region in a single-cylinder direct-injection spark-ignition gasoline engine. The effects of the pre-chamber spark plugs on flame development were analyzed by comparing the flame progress between the pre-chamber spark plugs and with the results from a conventional spark plug. The engine was operated at fixed conditions (relevant to federal test procedures) with a constant speed of 1500 revolutions per minute with a coolant temperature of 90 oC and stoichiometric fuel-to-air ratio. The in-cylinder images were captured with a color high-speed camera through an optical insert in the piston crown.
Technical Paper

A Concise Camera-Radar Fusion Framework for Object Detection and Data Association

2022-12-22
2022-01-7097
Multi-sensor fusion strategies have gradually become a consensus in autonomous driving research. Among them, radar-camera fusion has attracted wide attention for its improvement on the dimension and accuracy of perception at a lower cost, however, the processing and association of radar and camera data has become an obstacle to related research. Our approach is to build a concise framework for camera and radar detection and data association: for visual object detection, the state-of-the-art YOLOv5 algorithm is further improved and works as the image detector, and before the fusion process, the raw radar reflection data is projected onto image plane and hierarchically clustered, then the projected radar echoes and image detection results are matched based on the Hungarian algorithm. Thus, the category of objects and their corresponding distance and speed information can be obtained, providing reliable input for subsequent object tracking task.
Technical Paper

Effects of Structure and System Parameters on Fuel Leakage Characteristics of Precision Coupling Components in Fuel Injector for Modern Diesel Engine

2022-05-11
2022-01-5028
Increasing rail pressure is the development trend of high-pressure common rail system. When the rail pressure reaches ultrahigh range, fuel leakage of precision coupling components could have a significant impact on system performance. In order to investigate the effects of system and structure parameters on the leakage characteristics of precision coupling components, guide the design of ultrahigh-pressure common rail system, simulations were carried out. Variation of fuel leakage were studied with different structure and system parameters. A three-dimensional model of oil film with eccentric was developed to simulate eccentric between two parts of coupling component. The leakage in control valve component increases with common rail pressure; however, there is no obvious change in leakage of control piston component with rail pressure.
Technical Paper

Uncertainty Quantification of Wet Clutch Actuator Behaviors in P2 Hybrid Engine Start Process

2022-03-29
2022-01-0652
Advanced features in automotive systems often necessitate the management of complex interactions between subsystems. Existing control strategies are designed for certain levels of robustness, however their performance can unexpectedly deteriorate in the presence of significant uncertainties, resulting in undesirable system behaviors. This limitation is further amplified in systems with complex nonlinear dynamics. Hydro-mechanical clutch actuators are among those systems whose behaviors are highly sensitive to variations in subsystem characteristics and operating environments. In a P2 hybrid propulsion system, a wet clutch is utilized for cranking the engine during an EV-HEV mode switching event. It is critical that the hydro-mechanical clutch actuator is stroked as quickly and as consistently as possible despite the existence of uncertainties. Thus, the quantification of uncertainties on clutch actuator behaviors is important for enabling smooth EV-HEV transitions.
Technical Paper

Numerical Optimization of the Piston Bowl Geometry and Investigation of the Key Geometric Parameters for the Dual-Mode Dual-Fuel (DMDF) Concept under a Wide Load Range

2022-03-29
2022-01-0782
Focusing on the dual-mode dual-fuel (DMDF) combustion concept, a combined optimization of the piston bowl geometry with the fuel injection strategy was conducted at low, mid, and high loads. By coupling the KIVA-3V code with the enhanced genetic algorithm (GA), a total of 14 parameters including the piston bowl geometric parameters and the injection parameters were optimized with the objective of meeting Euro VI regulations while improving the fuel efficiency. The optimal piston bowl shape coupled with the corresponding injection strategy was summarized and integrated at various loads. Furthermore, the effects of the key geometric parameters were investigated in terms of organizing the in-cylinder flow, influencing the energy distribution, and affecting the emissions. The results indicate that the behavior of the DMDF combustion mode is further enhanced in the aspects of improving the fuel economy and controlling the emissions after the bowl geometry optimization.
Technical Paper

Rule-Based Power Management Strategy of Electric-Hydraulic Hybrid Vehicles: Case Study of a Class 8 Heavy-Duty Truck

2022-03-29
2022-01-0736
Mobility in the automotive and transportation sectors has been experiencing a period of unprecedented evolution. A growing need for efficient, clean and safe mobility has increased momentum toward sustainable technologies in these sectors. Toward this end, battery electric vehicles have drawn keen interest and their market share is expected to grow significantly in the coming years, especially in light-duty applications such as passenger cars. Although the battery electric vehicles feature high performance and zero tailpipe emission characteristics, economic and technical issues such as battery cost, driving range, recharging time and infrastructure remain main hurdles that need to be fully addressed. In particular, the low power density of the battery limits its broad adoption in heavy-duty applications such as class 8 semi-trailer trucks due to the required size and weight of the battery and electric motor.
Technical Paper

Injury Severity Prediction Algorithm Based on Select Vehicle Category for Advanced Automatic Collision Notification

2022-03-29
2022-01-0834
With the evolution of telemetry technology in vehicles, Advanced Automatic Collision Notification (AACN), which detects occupants at risk of serious injury in the event of a crash and triages them to the trauma center quickly, may greatly improve their treatment. An Injury Severity Prediction (ISP) algorithm for AACN was developed using a logistic regression model to predict the probability of sustaining an Injury Severity Score (ISS) 15+ injury. National Automotive Sampling System Crashworthiness Data System (NASS-CDS: 1999-2015) and model year 2000 or later were filtered for new case selection criteria, based on vehicle body type, to match Subaru vehicle category. This new proposed algorithm uses crash direction, change in velocity, multiple impacts, seat belt use, vehicle type, presence of any older occupant, and presence of any female occupant.
Technical Paper

Analysis of Energy and Exergy Distribution for Improving Fuel Economy of Marine Low-speed Two-stroke Diesel Engine

2022-03-29
2022-01-0392
Increasingly strict emission regulations and unfavorable economic climate bring severe challenges to the energy conservation of marine low-speed engine. Besides traditional methods, the energy and exergy analysis could acknowledge the losses of fuel from a global perspective to further improve the engine efficiency. Therefore, the energy and exergy analysis is conducted for a marine low-speed engine based on the experimental data. Energy analysis shows the exhaust gas occupies the largest proportion of all fuel energy waste, and it rises with the increment of engine load. The heat transfer consumes the second largest proportion, while it is negatively correlated to engine load. The energy analysis indicates that the most effective way to improve the engine efficiency is to reduce the energy wasted by exhaust gas and heat transfer. However, the latter exergy analysis demonstrates that there are other effective approaches to improve the engine efficiency.
Technical Paper

Development of a Reduced TPRF-E (Heptane/Isooctane/Toluene/Ethanol) Gasoline Surrogate Model for Computational Fluid Dynamic Applications in Engine Combustion and Sprays

2022-03-29
2022-01-0407
Investigating combustion characteristics of oxygenated gasoline and gasoline blended ethanol is a subject of recent interest. The non-linearity in the interaction of fuel components in the oxygenated gasoline can be studied by developing chemical kinetics of relevant surrogate of fewer components. This work proposes a new reduced four-component (isooctane, heptane, toluene, and ethanol) oxygenated gasoline surrogate mechanism consisting of 67 species and 325 reactions, applicable for dynamic CFD applications in engine combustion and sprays. The model introduces the addition of eight C1-C3 species into the previous model (Li et al; 2019) followed by extensive tuning of reaction rate constants of C7 - C8 chemistry. The current mechanism delivers excellent prediction capabilities in comprehensive combustion applications with an improved performance in lean conditions.
Technical Paper

Effects of Control Valve Structure Parameters on the Flow Characteristics of Oil Drainage Progress of Electronic Unit Pump for Diesel Engine

2021-05-17
2021-01-5048
In the present paper, a three-dimensional (3D) internal flow field model of an electronic unit pump (EUP) fuel system oil drainage progress was established, including solenoid valve model, control valve model, high-pressure oil passage, and the plunger cavity model. From the microscopic point of view, the flow characteristics, such as pressure, velocity, and turbulence kinetic energy, are analyzed by using Fluent. This paper uses the combination of one-dimensional (1D) software AMESim and 3D software Fluent to achieve the purpose. The pressure curve of the high-pressure pipe is extracted from the control valve module of the 1D EUP fuel system model, and the velocity curve of the plunger movement is extracted from the plunger pump module. The two sets of curves are dynamically linked to the flow field calculation with a User-Defined Function (UDF), and the flow field change of the single pump fuel system control valve is calculated by Fluent.
Journal Article

Tanker Truck Rollover Avoidance Using Learning Reference Governor

2021-04-06
2021-01-0256
Tanker trucks are commonly used for transporting liquid material including chemical and petroleum products. On the one hand, tanker trucks are susceptible to rollover accidents due to the high center of gravity when they are loaded and due to the liquid sloshing effects when the tank is partially filled. On the other hand, tanker truck rollover accidents are among the most dangerous vehicle crashes, frequently resulting in serious to fatal driver injuries and significant property damage, because the liquid cargo is often hazardous and flammable. Therefore, effective schemes for tanker truck rollover avoidance are highly desirable and can bring a considerable amount of societal benefit. Yet, the development of such schemes is challenging, as tanker trucks can operate in various environments and be affected by manufacturing variability, aging, degradation, etc. This paper considers the use of Learning Reference Governor (LRG) for tanker truck rollover avoidance.
X