Refine Your Search

Search Results

Viewing 1 to 2 of 2
Journal Article

Optimization of an Advanced Combustion Strategy Towards 55% BTE for the Volvo SuperTruck Program

2017-03-28
2017-01-0723
This paper describes a novel design and verification process for analytical methods used in the development of advanced combustion strategies in internal combustion engines (ICE). The objective was to improve brake thermal efficiency (BTE) as part of the US Department of Energy SuperTruck program. The tools and methods herein discussed consider spray formation and injection schedule along with piston bowl design to optimize combustion efficiency, air utilization, heat transfer, emission, and BTE. The methodology uses a suite of tools to optimize engine performance, including 1D engine simulation, high-fidelity CFD, and lab-scale fluid mechanic experiments. First, a wide range of engine operating conditions are analyzed using 1-D engine simulations in GT Power to thoroughly define a baseline for the chosen advanced engine concept; secondly, an optimization and down-select step is completed where further improvements in engine geometries and spray configurations are considered.
Technical Paper

Development and Verification of Reduced-Order Model for Diesel Spray Penetration and Spreading during Wall Impingement

2017-03-28
2017-01-0814
The mixing of a diesel spray with in-cylinder gases is driven by both turbulent mixing during the free-jet penetration phase and by mixing during the jet’s impingement on surfaces such as the piston bowl. Current reduced order models, and many experiments, focus solely on the free-jet penetration phase, although jet-wall interaction occurs during a significant portion of the duration of a fuel injection in both small-bore and large-bore engines. A control volume-based model for the spreading of an impinging spray along a flat wall is presented as a first step towards capturing key jet processes during the impingement phase of fuel injection. Schlieren measurements of impinging gaseous jets are used to evaluate the model.
X