Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Distortion Reduction in Roller Offset Forming Using Geometrical Optimization

2024-04-09
2024-01-2857
Roller offsetting is an incremental forming technique used to generate offset stiffening or mating features in sheet metal parts. Compared to die forming, roller offsetting utilizes generic tooling to create versatile designs at a relatively lower forming speed, making it well-suited for low volume productions in automotive and other industries. However, more significant distortion can be generated from roller offset forming process resulting from springback after forming. In this work, we use particle swarm optimization to identify the tool path and resulting feature geometry that minimizes distortion. In our approach, time-dependent finite element simulations are adopted to predict the distortion of each candidate tool path using a quarter symmetry model of the part. A multi-objective fitness function is used to both minimize the distortion measure while constraining the minimal radius of curvature in the tool path.
Technical Paper

Approaches for Developing and Evaluating Emerging Partial Driving Automation System HMIs

2024-04-09
2024-01-2055
Level 2 (L2) partial driving automation systems are rapidly emerging in the marketplace. L2 systems provide sustained automatic longitudinal and lateral vehicle motion control, reducing the need for drivers to continuously brake, accelerate and steer. Drivers, however, remain critically responsible for safely detecting and responding to objects and events. This paper summarizes variations of L2 systems (hands-on and/or hands-free) and considers human drivers’ roles when using L2 systems and for designing Human-Machine Interfaces (HMIs), including Driver Monitoring Systems (DMSs). In addition, approaches for examining potential unintended consequences of L2 usage and evaluating L2 HMIs, including field safety effect examination, are reviewed. The aim of this paper is to guide L2 system HMI development and L2 system evaluations, especially in the field, to support safe L2 deployment, promote L2 system improvements, and ensure well-informed L2 policy decision-making.
Technical Paper

Optimal Control Co-Design of a Parallel Electric-Hydraulic Hybrid Vehicle

2024-04-09
2024-01-2154
This paper presents an optimal control co-design framework of a parallel electric-hydraulic hybrid powertrain specifically tailored for heavy-duty vehicles. A pure electric powertrain, comprising a rechargeable lithium-ion battery, a highly efficient electric motor, and a single or double-speed gearbox, has garnered significant attention in the automotive sector due to the increasing demand for clean and efficient mobility. However, the state-of-the-art has demonstrated limited capabilities and has struggled to meet the design requirements of heavy-duty vehicles with high power demands, such as a class 8 semi-trailer truck. This is especially evident in terms of a driving range on one battery charge, battery charging time, and load-carrying capacity. These challenges primarily stem from the low power density of lithium-ion batteries and the low energy conversion efficiency of electric motors at low speeds.
Technical Paper

Electric vehicle battery health aware DC fast-charging recommendation system

2024-04-09
2024-01-2604
DC fast charging (DCFC) also referred to as L3 charging, is the fastest charging technology to replenish the drivable range of an electric vehicle. DCFC provides the convenience of faster charging time compared to L1 and L2 at the expense of potentially increased battery health degradation. It is known to accelerate battery capacity fade leading to reduced range and lifetime of the EV battery. While there are active efforts and several means to reduce the downsides of DCFC at cell chemistry level, this trade-off is still an important consideration for most battery cells in automotive propulsion applications. Since DCFC is a customer driven technology, informing drivers of the trade-off of each DCFC event can potentially result in better outcomes for the EV battery life. Traditionally, the driver is advised to limit DCFC events without providing quantifiable metrics to inform their decisions during EV charging.
Technical Paper

Comprehensive Evaluation of Behavioral Competence of an Automated Vehicle Using the Driving Assessment (DA) Methodology

2024-04-09
2024-01-2642
With the development of vehicles equipped with automated driving systems, the need for systematic evaluation of AV performance has grown increasingly imperative. According to ISO 34502, one of the safety test objectives is to learn the minimum performance levels required for diverse scenarios. To address this need, this paper combines two essential methodologies - scenario-based testing procedures and scoring systems - to systematically evaluate the behavioral competence of AVs. In this study, we conduct comprehensive testing across diverse scenarios within a simulator environment following Mcity AV Driver Licensing Test procedure. These scenarios span several common real-world driving situations, including BV Cut-in, BV Lane Departure into VUT Path from Opposite Direction, BV Left Turn Across VUT Path, and BV Right Turn into VUT Path scenarios.
Technical Paper

Vehicle Yaw Dynamics Safety Analysis Methodology based on ISO-26262 Controllability Classification

2024-04-09
2024-01-2766
Complex chassis systems operate in various environments such as low-mu surfaces and highly dynamic maneuvers. The existing metrics for lateral motion hazard by Neukum [13] and Amberkar [17] have been developed and correlated to driver behavior against disturbances on straight line driving on a dry surface, but do not cover low-mu surfaces and dynamic driving scenarios which include both linear and nonlinear region of vehicle operation. As a result, an improved methodology for evaluating vehicle yaw dynamics is needed for safety analysis. Vehicle yaw dynamics safety analysis is a methodical evaluation of the overall vehicle controllability with respect to its yaw motion and change of handling characteristic.
Technical Paper

Design and Simulation of Battery Enclosure for an Electric Vehicle Application

2024-04-09
2024-01-2738
Making a sturdy battery box or enclosure is one of the many challenging issues that the expansion of electrification entails. Many characteristics of an effective battery housing contribute to the safety of passengers and shield the battery from the harsh environment created by vibrations and shocks due to varying road profiles in the vehicle. This results in stress and deformations of different degrees. There is a need to understand and develop a correlation between structural performance and lightweight design of battery enclosure as this can increase the range of the drive and the life cycle of a battery pack. This paper investigates the following points: I) A conceptualized CAD model of battery enclosure is developed to understand the design parameters such as utilization of different material for strength and structural changes for performance against vibration and strength.
Technical Paper

Gasoline Simulated Distillation Profiles of U.S. Market Gasoline and Impacts on Vehicle Particulate Emissions

2023-10-31
2023-01-1632
A gasoline’s distillation profile is directly related to its hydrocarbon composition and the volatility (boiling points) of those hydrocarbons. Generally, the volatility profiles of U.S. market fuels are characterized using a very simple, low theoretical plate distillation separation, detailed in the ASTM D86 test method. Because of the physical chemistry properties of some compounds in gasoline, this simple still or retort distillation has some limitations: separating azeotropes, isomers, and heavier hydrocarbons. Chemists generally rely on chromatographic separations when more detailed and precise results are needed. High-boiling aromatic compounds are the primary source of particulate emissions from spark ignited (SI), internal combustion engines (ICE), hence a detailed understanding and high-resolution separation of these heavy compounds is needed.
Journal Article

A Process to Characterize the Sound Directivity Pattern of AVAS Speaker

2023-05-08
2023-01-1095
Speaker performance in Acoustic Vehicle Alerting System (AVAS) plays a crucial role for pedestrian safety. Sound radiation from AVAS speaker has obvious directivity pattern. Considering this feature is critical for accurately simulating the exterior sound field of electrical vehicles. This paper proposes a new process to characterize the sound directivity pattern of AVAS speaker. The first step of the process is to perform an acoustic testing to measure the sound pressure radiated from the speaker at a certain number of microphone locations in a free field environment. Based on the geometry of a virtual speaker, the locations of each microphone and measured sound pressure data, an inverse method, namely the inverse pellicular analysis, is adopted to recover a set of vibration pattern of the virtual speaker surface. The recovered surface vibration pattern can then be incorporated in the full vehicle numerical model as an excitation for simulating the exterior sound field.
Technical Paper

Lubrication Effects on Automotive Steel Friction between Bending under Tension and Draw Bead Test

2023-04-11
2023-01-0729
Zinc-based electrogalvanized (EG) and hot-dip galvanized (HDGI) coatings have been widely used in automotive body-in-white components for corrosion protection. The formability of zinc coated sheet steels depends on the properties of the sheet and the interactions at the interface between the sheet and the tooling. The frictional behavior of zinc coated sheet steels is influenced by the interfacial conditions present during the forming operation. Friction behavior has also been found to deviate from test method to test method. In this study, various lubrication conditions were applied to both bending under tension (BUT) test and a draw bead simulator (DBS) test for friction evaluations. Two different zinc coated steels; electrogalvanized (EG) and hot-dip galvanized (HDGI) were included in the study. In addition to the coated steels, a non-coated cold roll steel was also included for comparison purpose.
Technical Paper

A Data-Driven Framework of Crash Scenario Typology Development for Child Vulnerable Road Users in the U.S.

2023-04-11
2023-01-0787
Motor vehicle crashes involving child Vulnerable Road Users (VRUs) remain a critical public health concern in the United States. While previous studies successfully utilized the crash scenario typology to examine traffic crashes, these studies focus on all types of motor vehicle crashes thus the method might not apply to VRU crashes. Therefore, to better understand the context and causes of child VRU crashes on the U.S. road, this paper proposes a multi-step framework to define crash scenario typology based on the Fatality Analysis Reporting System (FARS) and the Crash Report Sampling System (CRSS). A comprehensive examination of the data elements in FARS and CRSS was first conducted to determine elements that could facilitate crash scenario identification from a systematic perspective. A follow-up context description depicts the typical behavioral, environmental, and vehicular conditions associated with an identified crash scenario.
Technical Paper

Perspectives on the Transition from Hardware-Based Validation and Product Evaluation to Virtual Processes

2023-04-11
2023-01-0164
Accelerating product development cycles and incentives to reduce costs in product development are strong motivators to move to virtual development and validation processes. Challenges to moving to a virtual paradigm include a wealth of historical data and context for hardware tests, uncertainty over dependencies, and a lack of a clear path of transition to virtual methods. In this paper we will discuss approaches to understanding the value created by hardware tests and aligning that value to virtual processes. We will also discuss the need for a virtual context to be added to SAE J1739 [1] (DFMEA detection criteria), and how to create paths to maximize the value of virtual assessments. Finally, we will also discuss the cultural and organizational changes required to support.
Technical Paper

Assessing Driver Distraction: Enhancements of the ISO 26022 Lane Change Task to Make its Difficulty Adjustable

2023-04-11
2023-01-0791
The Lane Change Task (LCT) provides a simple, scorable simulation of driving, and serves as a primary task in studies of driver distraction. It is widely accepted, but somewhat limited in functionality, a problem this project partially overcomes. In the Lane Change Task, subjects drive along a road with 3 lanes in the same direction. Periodically, signs appear, indicating in which of the 3 lanes the subject should drive, which changes from sign to sign. The software is plug-and-play for a current Windows computer with a Logitech steering/pedal assembly, even though the software was written 18 years ago. For each timestamp in a trial, the software records the steering wheel angle, speed, and x and y coordinates of the subject. A limitation of the LCT is that few characteristics of this useful software can be readily modified as only the executable code is available (on the ISO 26022 website), not the source code.
Technical Paper

Minimizing Steady-State Testing Time in an Engine Dynamometer Laboratory

2023-04-11
2023-01-0209
In the automotive industry, performing steady-state tests on an internal combustion engine can be a time consuming and costly process, but it is necessary to ensure the engine meets performance and emissions criteria set by the manufacturer and regulatory agencies. Any measures that can reduce the amount of time required to complete these testing campaigns provides significant benefits to manufacturers. The purpose of this work is then to develop a systematic approach to minimize the time required to conduct a steady-state engine test campaign using a Savitsky-Golay filter to calculate measured signal gradients for continuous steady-state detection. Experiments were conducted on an Armfield CM11-MKII Gasoline Engine test bench equipped with a 1.2L 3-cylinder Volkswagen EA111 R3 engine. The test bench utilizes throttle position control and an eddy current dynamometer braking system with automatic PID control of engine speed.
Journal Article

A Standard Set of Courses to Assess the Quality of Driving Off-Road Combat Vehicles

2023-04-11
2023-01-0114
Making manned and remotely-controlled wheeled and tracked vehicles easier to drive, especially off-road, is of great interest to the U.S. Army. If vehicles are easier to drive (especially closed hatch) or if they are driven autonomously, then drivers could perform additional tasks (e.g., operating weapons or communication systems), leading to reduced crew sizes. Further, poorly driven vehicles are more likely to get stuck, roll over, or encounter mines or improvised explosive devices, whereby the vehicle can no longer perform its mission and crew member safety is jeopardized. HMI technology and systems to support human drivers (e.g., autonomous driving systems, in-vehicle monitors or head-mounted displays, various control devices (including game controllers), navigation and route-planning systems) need to be evaluated, which traditionally occurs in mission-specific (and incomparable) evaluations.
Journal Article

Development of Digital Shearography for Dual Sensitivity Simultaneous Measurement Using Carrier Frequency Spatial Phase Shift Technology

2023-04-11
2023-01-0068
Digital shearography has many advantages, such as full-field, non-contact, high sensitivity, and good robustness. It was widely used to measure the deformation and strain of materials, also to the application of nondestructive testing (NDT). However, most digital sherography applications can only work in one field of view per measurement, and some small defects may not be detected as a result. Multiple measurements of different fields of view are needed to solve this issue, which will increase the measurement time and cost. The difficulty in performing multiple measurements may also increase for cases where the loading is not repeatable. Therefore, a system capable of measuring dual fields of view at the same time is necessary. The carrier frequency spatial phase shift method may be a good candidate to reach this goal because it can simultaneously record phase information of multiple images, e.g. two speckle interferograms with different fields of view.
Technical Paper

Virtual Testing of Front Camera Module

2023-04-11
2023-01-0823
The front camera module is a fundamental component of a modern vehicle’s active safety architecture. The module supports many active safety features. Perception of the road environment, requests for driver notification or alert, and requests for vehicle actuation are among the camera software’s key functions. This paper presents a novel method of testing these functions virtually. First, the front camera module software is compiled and packaged in a Docker container capable of running on a standard Linux computer as a software in the loop (SiL). This container is then integrated with the active safety simulation tool that represents the vehicle plant model and allows modeling of test scenarios. Then the following simulation components form a closed loop: First, the active safety simulation tool generates a video data stream (VDS). Using an internet protocol, the tool sends the VDS to the camera SiL and other vehicle channels.
Technical Paper

Neural Network Model to Predict the Thermal Operating Point of an Electric Vehicle

2023-04-11
2023-01-0134
The automotive industry widely accepted the launch of electric vehicles in the global market, resulting in the emergence of many new areas, including battery health, inverter design, and motor dynamics. Maintaining the desired thermal stress is required to achieve augmented performance along with the optimal design of these components. The HVAC system controls the coolant and refrigerant fluid pressures to maintain the temperatures of [Battery, Inverter, Motor] in a definite range. However, identifying the prominent factors affecting the thermal stress of electric vehicle components and their effect on temperature variation was not investigated in real-time. Therefore, this article defines the vector electric vehicle thermal operating point (EVTHOP) as the first step with three elements [instantaneous battery temperature, instantaneous inverter temperature, instantaneous stator temperature].
Journal Article

Estimates of In-Vehicle Task Element Times for Usability and Distraction Evaluations

2023-04-11
2023-01-0789
Engaging in visual-manual tasks such as selecting a radio station, adjusting the interior temperature, or setting an automation function can be distracting to drivers. Additionally, if setting the automation fails, driver takeover can be delayed. Traditionally, assessing the usability of driver interfaces and determining if they are unacceptably distracting (per the NHTSA driver distraction guidelines and SAE J2364) involves human subject testing, which is expensive and time-consuming. However, most vehicle engineering decisions are based on computational analyses, such as the task time predictions in SAE J2365. Unfortunately, J2365 was developed before touch screens were common in motor vehicles.
Journal Article

Role of Worst-Case Operating Scenario and Component Tolerance in Robust Automotive Electronic Control Module Design

2023-04-11
2023-01-0849
Use of electronic systems in the vehicles is increasing day by day. As Electronic Control Modules (ECMs) become a large part of the vehicle, automotive designers need to take diligent decision of selecting electrical and electronic components. Selecting these components for ECM depends on four major factors: meeting stringent vehicle requirements, performance over the lifespan, robustness/reliability and cost. There is always an urge of reducing the cost of the ECM, but robustness of the controller module must not be compromised. One electrical or electronic component failure or false fault detection not only increases warranty cost but may also stall the vehicle, and interrupts customer’s daily routine creating dissatisfaction. This paper emphasizes on the importance of understanding worst-case operating scenarios considering component tolerances over the operating range, datasheet, and impact of tolerances on performance and fault detection.
X