Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

A Special User Shell Element for Coarse Mesh and High-Fidelity Fatigue Modeling of Spot-Welded Structures

2024-04-09
2024-01-2254
A special spot weld element (SWE) is presented for simplified representation of spot joints in complex structures for structural durability evaluation using the mesh-insensitive structural stress method. The SWE is formulated using rigorous linear four-node Mindlin shell elements with consideration of weld region kinematic constraints and force/moments equilibrium conditions. The SWEs are capable of capturing all major deformation modes around weld region such that rather coarse finite element mesh can be used in durability modeling of complex vehicle structures without losing any accuracy. With the SWEs, all relevant traction structural stress components around a spot weld nugget can be fully captured in a mesh-insensitive manner for evaluation of multiaxial fatigue failure.
Technical Paper

Approaches for Developing and Evaluating Emerging Partial Driving Automation System HMIs

2024-04-09
2024-01-2055
Level 2 (L2) partial driving automation systems are rapidly emerging in the marketplace. L2 systems provide sustained automatic longitudinal and lateral vehicle motion control, reducing the need for drivers to continuously brake, accelerate and steer. Drivers, however, remain critically responsible for safely detecting and responding to objects and events. This paper summarizes variations of L2 systems (hands-on and/or hands-free) and considers human drivers’ roles when using L2 systems and for designing Human-Machine Interfaces (HMIs), including Driver Monitoring Systems (DMSs). In addition, approaches for examining potential unintended consequences of L2 usage and evaluating L2 HMIs, including field safety effect examination, are reviewed. The aim of this paper is to guide L2 system HMI development and L2 system evaluations, especially in the field, to support safe L2 deployment, promote L2 system improvements, and ensure well-informed L2 policy decision-making.
Technical Paper

Extended Deep Learning Model to Predict the Electric Vehicle Motor Operating Point

2024-04-09
2024-01-2551
The transition from combustion engines to electric propulsion is accelerating in every coordinate of the globe. The engineers had strived hard to augment the engine performance for more than eight decades, and a similar challenge had emerged again for electric vehicles. To analyze the performance of the engine, the vector engine operating point (EOP) is defined, which is common industry practice, and the performance vector electric vehicle motor operating point (EVMOP) is not explored in the existing literature. In an analogous sense, electric vehicles are embedded with three primary components, e.g., Battery, Inverter, Motor, and in this article, the EVMOP is defined using the parameters [motor torque, motor speed, motor current]. As a second aspect of this research, deep learning models are developed to predict the EVMOP by mapping the parameters representing the dynamic state of the system in real-time.
Technical Paper

Estimating How Long In-Vehicle Tasks Take: Static Data for Distraction and Ease-of-Use Evaluations

2024-04-09
2024-01-2505
Often, when assessing the distraction or ease of use of an in-vehicle task (such as entering a destination using the street address method), the first question is “How long does the task take on average?” Engineers routinely resolve this question using computational models. For in-vehicle tasks, “how long” is estimated by summing times for the included task elements (e.g., decide what to do, press a button) from SAE Recommended Practice J2365 or now using new static (while parked) data presented here. Times for the occlusion conditions in J2365 and the NHTSA Distraction Guidelines can be determined using static data and Pettitt’s Method or Purucker’s Method. These first approximations are reasonable and can be determined quickly. The next question usually is “How likely is it that the task will exceed some limit?”
Technical Paper

Computational Assessment of Ammonia as a Fuel for Light-Duty SI Engines

2023-08-28
2023-24-0013
To understand key practical aspects of ammonia as a fuel for internal combustion engines, three-dimensional computational fluid dynamics (CFD) simulations were performed using CONVERGETM. A light-duty single-cylinder research engine with a geometrical compression ratio of 11.5 and a conventional pentroof combustion chamber was experimentally operated at stoichiometry. The fumigated ammonia was introduced at the intake plenum. Upon model validation, additional sensitivity analysis was performed. The combustion was modeled using a detailed chemistry solver (SAGE), and the ammonia oxidation was computed from a 38-specie and 262-reaction chemical reaction mechanism. Three different piston shapes were assessed, and it was found that the near-spark flow field associated with the piston design in combination with the tumble motion promotes faster combustion and yields enhanced engine performance.
Technical Paper

Finite Element Analyses of Macroscopic Stress-Strain Relations and Failure Modes for Tensile Tests of Additively Manufactured AlSi10Mg with Consideration of Melt Pool Microstructures and Pores

2023-04-11
2023-01-0955
Finite element (FE) analyses of macroscopic stress-strain relations and failure modes for tensile tests of additively manufactured (AM) AlSi10Mg in different loading directions with respect to the building direction are conducted with consideration of melt pool (MP) microstructures and pores. The material constitutive relations in different orientations of AM AlSi10Mg are first obtained from fitting the experimental tensile engineering stress-strain curves by conducting axisymmetric FE analyses of round bar tensile specimens. Four representative volume elements (RVEs) with MP microstructures with and without pores are identified and selected based on the micrographs of the longitudinal cross-sections of the vertical and horizontal tensile specimens. Two-dimensional plane stress elastic-plastic FE analyses of the RVEs subjected to uniaxial tension are then conducted.
Technical Paper

An Ultra-Light Heuristic Algorithm for Autonomous Optimal Eco-Driving

2023-04-11
2023-01-0679
Connected autonomy brings with it the means of significantly increasing vehicle Energy Economy (EE) through optimal Eco-Driving control. Much research has been conducted in the area of autonomous Eco-Driving control via various methods. Generally, proposed algorithms fall into the broad categories of rules-based controls, optimal controls, and meta-heuristics. Proposed algorithms also vary in cost function type with the 2-norm of acceleration being common. In a previous study the authors classified and implemented commonly represented methods from the literature using real-world data. Results from the study showed a tradeoff between EE improvement and run-time and that the best overall performers were meta-heuristics. Results also showed that cost functions sensitive to the 1-norm of acceleration led to better performance than those which directly minimize the 2-norm.
Technical Paper

Neural Network Model to Predict the Thermal Operating Point of an Electric Vehicle

2023-04-11
2023-01-0134
The automotive industry widely accepted the launch of electric vehicles in the global market, resulting in the emergence of many new areas, including battery health, inverter design, and motor dynamics. Maintaining the desired thermal stress is required to achieve augmented performance along with the optimal design of these components. The HVAC system controls the coolant and refrigerant fluid pressures to maintain the temperatures of [Battery, Inverter, Motor] in a definite range. However, identifying the prominent factors affecting the thermal stress of electric vehicle components and their effect on temperature variation was not investigated in real-time. Therefore, this article defines the vector electric vehicle thermal operating point (EVTHOP) as the first step with three elements [instantaneous battery temperature, instantaneous inverter temperature, instantaneous stator temperature].
Technical Paper

The Effects of Piston Shape in a Narrow-Throat Pre-Chamber Engine

2022-08-30
2022-01-1059
The current work utilizes computational fluid dynamics (CFD) simulations to assess the effects of different piston geometries in an active-type pre-chamber combustion engine fueled with methane. Previous works identified that the interaction of the jets with the main chamber flow and piston wall are key aspects for the local turbulent flame speed and overall burning duration. The combustion process is simulated with the G-equation model for flame propagation combined with the MZ-WSR model to determine the post-flame composition and to predict possible auto-ignition of the reactant mixture. Four setups were considered: two bowl-shaped and one flat piston, and one additional case of the flat piston with jets at wider jet angles to the cylinder axis. The results show that premature jet-wall interaction impacts the main chamber pressure build-up, turbulence, and burn rate.
Technical Paper

Numerical Investigation of the Effects of Piston Design and Injection Strategy on Passive Pre-chamber Enrichment

2022-08-30
2022-01-1041
The pre-chamber combustion can extend the lean limit of internal combustion engines (ICE) and hence increase their overall efficiency. Compared to active pre-chambers equipped with an auxiliary fuel supply system, passive pre-chambers have lower manufacturing costs and require minimal or no design modifications to the conventional spark plug engines. The major challenge of the passive pre-chamber is to extend the lean limit as much as the active pre-chamber. Computational fluid dynamics (CFD) simulations were conducted on a light-duty single-cylinder engine geometry fitted with a passive pre-chamber and using iso-octane as fuel to investigate and optimize the passive pre-chamber fuel enrichment through the pre-chamber nozzles. The non-reacting flow simulations were performed from the intake valve open (IVO) to spark timing.
Technical Paper

Rule-Based Power Management Strategy of Electric-Hydraulic Hybrid Vehicles: Case Study of a Class 8 Heavy-Duty Truck

2022-03-29
2022-01-0736
Mobility in the automotive and transportation sectors has been experiencing a period of unprecedented evolution. A growing need for efficient, clean and safe mobility has increased momentum toward sustainable technologies in these sectors. Toward this end, battery electric vehicles have drawn keen interest and their market share is expected to grow significantly in the coming years, especially in light-duty applications such as passenger cars. Although the battery electric vehicles feature high performance and zero tailpipe emission characteristics, economic and technical issues such as battery cost, driving range, recharging time and infrastructure remain main hurdles that need to be fully addressed. In particular, the low power density of the battery limits its broad adoption in heavy-duty applications such as class 8 semi-trailer trucks due to the required size and weight of the battery and electric motor.
Technical Paper

Injury Severity Prediction Algorithm Based on Select Vehicle Category for Advanced Automatic Collision Notification

2022-03-29
2022-01-0834
With the evolution of telemetry technology in vehicles, Advanced Automatic Collision Notification (AACN), which detects occupants at risk of serious injury in the event of a crash and triages them to the trauma center quickly, may greatly improve their treatment. An Injury Severity Prediction (ISP) algorithm for AACN was developed using a logistic regression model to predict the probability of sustaining an Injury Severity Score (ISS) 15+ injury. National Automotive Sampling System Crashworthiness Data System (NASS-CDS: 1999-2015) and model year 2000 or later were filtered for new case selection criteria, based on vehicle body type, to match Subaru vehicle category. This new proposed algorithm uses crash direction, change in velocity, multiple impacts, seat belt use, vehicle type, presence of any older occupant, and presence of any female occupant.
Technical Paper

Development of a Reduced TPRF-E (Heptane/Isooctane/Toluene/Ethanol) Gasoline Surrogate Model for Computational Fluid Dynamic Applications in Engine Combustion and Sprays

2022-03-29
2022-01-0407
Investigating combustion characteristics of oxygenated gasoline and gasoline blended ethanol is a subject of recent interest. The non-linearity in the interaction of fuel components in the oxygenated gasoline can be studied by developing chemical kinetics of relevant surrogate of fewer components. This work proposes a new reduced four-component (isooctane, heptane, toluene, and ethanol) oxygenated gasoline surrogate mechanism consisting of 67 species and 325 reactions, applicable for dynamic CFD applications in engine combustion and sprays. The model introduces the addition of eight C1-C3 species into the previous model (Li et al; 2019) followed by extensive tuning of reaction rate constants of C7 - C8 chemistry. The current mechanism delivers excellent prediction capabilities in comprehensive combustion applications with an improved performance in lean conditions.
Technical Paper

A Numerical Study on the Effect of a Pre-Chamber Initiated Turbulent Jet on Main Chamber Combustion

2022-03-29
2022-01-0469
To elucidate the complex characteristics of pre-chamber combustion engines, the interaction of the hot gas jets initiated by an active narrow throated pre-chamber with lean premixed CH4/air in a heavy-duty engine was studied computationally. A twelve-hole KAUST proprietary pre-chamber geometry was investigated using CONVERGE software. The KAUST pre-chamber has an upper conical part with the spark plug, and fuel injector, followed by a straight narrow region called the throat and nozzles connecting the chambers. The simulations were run for an entire cycle, starting at the previous cycle's exhaust valve opening (EVO). The SAGE combustion model was used with the chemistry modeled using a reduced methane oxidation mechanism based on GRI Mech 3.0, which was validated against in-house OH chemiluminescence data from the optical engine experiments.
Technical Paper

Prediction of ECN Spray—A Characteristics Using Machine Learning

2022-03-29
2022-01-0494
Flame lift-off length (FLOL), ignition delay time (IDT), liquid length (LL), and Soot are essential parameters defining spray combustion characteristics. They help understand the combustion dynamics and validate the spray and combustion models for numerical simulations. However, obtaining extensive data from experiments is costlier and time-consuming. Machine learning (ML) models have advanced to the point where they could create efficient models that could be used as surrogates for experiments. In this study, five different ML algorithms have been trained using the experimental dataset available through the engine combustion network (ECN) community. A novel genetic algorithm-based hyperparameter optimization code has been used to optimize the models to improve prediction accuracy. The model performances were compared, and the better model was chosen as an experimental surrogate to predict FLOL, IDT, LL, and Soot.
Technical Paper

Visualization of Frequency Response Using Nyquist Plots

2022-03-29
2022-01-0753
Nyquist plots are a classical means to visualize a complex vibration frequency response function. By graphing the real and imaginary parts of the response, the dynamic behavior in the vicinity of resonances is emphasized. This allows insight into how modes are coupling, and also provides a means to separate the modes. Mathematical models such as Nyquist analysis are often embedded in frequency analysis hardware. While this speeds data collection, it also removes this visually intuitive tool from the engineer’s consciousness. The behavior of a single degree of freedom system will be shown to be well described by a circle on its Nyquist plot. This observation allows simple visual examination of the response of a continuous system, and the determination of quantities such as modal natural frequencies, damping factors, and modes shapes. Vibration test data from an auto rickshaw chassis are used as an example application.
Technical Paper

Computational Investigation of the Effects of Injection Strategy and Rail Pressure on Isobaric Combustion in an Optical Compression Ignition Engine

2021-09-05
2021-24-0023
The high-pressure isobaric combustion has been proposed as the most suitable combustion mode for the double compre4ssion expansion engine (DCEE) concept. Previous experimental and simulation studies have demonstrated an improved efficiency compared to the conventional diesel combustion (CDC) engine. In the current study, isobaric combustion was achieved using a single injector with multiple injections. Since this concept involves complex phenomena such as spray to spray interactions, the computational models were extensively validated against the optical engine experiment data, to ensure high-fidelity simulations. The considered optical diagnostic techniques are Mie-scattering, fuel tracer planar laser-induced fluorescence (PLIF), and natural flame luminosity imaging. Overall, a good agreement between the numerical and experimental results was obtained.
Technical Paper

Parametric Study to Optimize Gasoline Compression Ignition Operation under Low Load Condition Using CFD

2021-04-06
2021-01-0440
The effects of intake pressure (Pin), start of injection (SOI), injection pressure (Pinj), injection split ratio (Qsplit), internal and external exhaust gas recirculation rates were varied to optimize several key parameters at a partially pre-mixed combustion low load/low speed condition using CFD. These include indicated specific fuel consumption (ISFC), combustion phasing (CA50), maximum rate of pressure rise (MRPR), maximum cylinder pressure (Pmax), indicated specific NOx (sNOx), indicated specific hydrocarbons (sHC) and Filter Smoke Number (FSN) emissions. Low-load point (6 bar indicated mean effective pressure (IMEP), 1500 revolutions per minute (RPM)) was selected where Pin varied between 1.25 and 1.5 bar, SOI between -100 and -10 crank angle degree (CAD) after top dead center (aTDC), Pinj between 100 and 200 bar, split ratio between 0 and 0.5, EGR between 0 and 45% and internal EGR measured by rebreathing valve height was varied between 0 and 4.5 mm.
Technical Paper

Machine Learning and Response Surface-Based Numerical Optimization of the Combustion System for a Heavy-Duty Gasoline Compression Ignition Engine

2021-04-06
2021-01-0190
The combustion system of a heavy-duty diesel engine operated in a gasoline compression ignition mode was optimized using a CFD-based response surface methodology and a machine learning genetic algorithm. One common dataset obtained from a CFD design of experiment campaign was used to construct response surfaces and train machine learning models. 128 designs were included in the campaign and were evaluated across three engine load conditions using the CONVERGE CFD solver. The design variables included piston bowl geometry, injector specifications, and swirl ratio, and the objective variables were fuel consumption, criteria emissions, and mechanical design constraints. In this study, the two approaches were extensively investigated and applied to a common dataset. The response surface-based approach utilized a combination of three modeling techniques to construct response surfaces to enhance the performance of predictions.
Technical Paper

Parametric Study to Optimize Gasoline Compression Ignition Operation under Medium Load-Conditions

2021-04-06
2021-01-0460
Gasoline compression ignition (GCI) pertains to high efficiency lean burn compression ignition with gasoline fuels, where ignition is controlled by mixture’s auto-ignition chemistry as well as local mixture strength. The presented GCI combustion strategy is based on a multi-mode combustion strategy at various operating conditions. This study presents a part of work on the development of an optimum combustion strategy at medium loading condition for commercial gasoline fuel with research octane number (RON) = 91. The single cylinder engine with a compression ratio (CR) = 16 features a centrally mounted multi-hole injector with a spark plug at a distance from the injector under shallow pent-roof combustion chamber design. The design of combustion chamber and piston was previously optimized based on CFD numerical analysis.
X