Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Validation and Analysis of Driving Safety Assessment Metrics in Real-world Car-Following Scenarios with Aerial Videos

2024-04-09
2024-01-2020
Data-driven driving safety assessment is crucial in understanding the insights of traffic accidents caused by dangerous driving behaviors. Meanwhile, quantifying driving safety through well-defined metrics in real-world naturalistic driving data is also an important step for the operational safety assessment of automated vehicles (AV). However, the lack of flexible data acquisition methods and fine-grained datasets has hindered progress in this critical area. In response to this challenge, we propose a novel dataset for driving safety metrics analysis specifically tailored to car-following situations. Leveraging state-of-the-art Artificial Intelligence (AI) technology, we employ drones to capture high-resolution video data at 12 traffic scenes in the Phoenix metropolitan area. After that, we developed advanced computer vision algorithms and semantically annotated maps to extract precise vehicle trajectories and leader-follower relations among vehicles.
Technical Paper

Active Collision Avoidance System for E-Scooters in Pedestrian Environment

2024-04-09
2024-01-2555
In the dense fabric of urban areas, electric scooters have rapidly become a preferred mode of transportation. As they cater to modern mobility demands, they present significant safety challenges, especially when interacting with pedestrians. In general, e-scooters are suggested to be ridden in bike lanes/sidewalks or share the road with cars at the maximum speed of about 15-20 mph, which is more flexible and much faster than pedestrians and bicyclists. Accurate prediction of pedestrian movement, coupled with assistant motion control of scooters, is essential in minimizing collision risks and seamlessly integrating scooters in areas dense with pedestrians. Addressing these safety concerns, our research introduces a novel e-Scooter collision avoidance system (eCAS) with a method for predicting pedestrian trajectories, employing an advanced Long short-term memory (LSTM) network integrated with a state refinement module.
Technical Paper

Estimating How Long In-Vehicle Tasks Take: Static Data for Distraction and Ease-of-Use Evaluations

2024-04-09
2024-01-2505
Often, when assessing the distraction or ease of use of an in-vehicle task (such as entering a destination using the street address method), the first question is “How long does the task take on average?” Engineers routinely resolve this question using computational models. For in-vehicle tasks, “how long” is estimated by summing times for the included task elements (e.g., decide what to do, press a button) from SAE Recommended Practice J2365 or now using new static (while parked) data presented here. Times for the occlusion conditions in J2365 and the NHTSA Distraction Guidelines can be determined using static data and Pettitt’s Method or Purucker’s Method. These first approximations are reasonable and can be determined quickly. The next question usually is “How likely is it that the task will exceed some limit?”
Technical Paper

Evaluating Safety Metrics for Vulnerable Road Users at Urban Traffic Intersections Using High-Density Infrastructure LiDAR System

2024-04-09
2024-01-2641
Ensuring the safety of vulnerable road users (VRUs) such as pedestrians, users of micro-mobility vehicles, and cyclists is imperative for the commercialization of automated vehicles (AVs) in urban traffic scenarios. City traffic intersections are of particular concern due to the precarious situations VRUs often encounter when navigating these locations, primarily because of the unpredictable nature of urban traffic. Earlier work from the Institute of Automated Vehicles (IAM) has developed and evaluated Driving Assessment (DA) metrics for analyzing car following scenarios. In this work, we extend those evaluations to an urban traffic intersection testbed located in downtown Tempe, Arizona. A multimodal infrastructure sensor setup, comprising a high-density, 128-channel LiDAR and a 720p RGB camera, was employed to collect data during the dusk period, with the objective of capturing data during the transition from daylight to night.
Technical Paper

Comprehensive Evaluation of Behavioral Competence of an Automated Vehicle Using the Driving Assessment (DA) Methodology

2024-04-09
2024-01-2642
With the development of vehicles equipped with automated driving systems, the need for systematic evaluation of AV performance has grown increasingly imperative. According to ISO 34502, one of the safety test objectives is to learn the minimum performance levels required for diverse scenarios. To address this need, this paper combines two essential methodologies - scenario-based testing procedures and scoring systems - to systematically evaluate the behavioral competence of AVs. In this study, we conduct comprehensive testing across diverse scenarios within a simulator environment following Mcity AV Driver Licensing Test procedure. These scenarios span several common real-world driving situations, including BV Cut-in, BV Lane Departure into VUT Path from Opposite Direction, BV Left Turn Across VUT Path, and BV Right Turn into VUT Path scenarios.
Technical Paper

A Data-Driven Framework of Crash Scenario Typology Development for Child Vulnerable Road Users in the U.S.

2023-04-11
2023-01-0787
Motor vehicle crashes involving child Vulnerable Road Users (VRUs) remain a critical public health concern in the United States. While previous studies successfully utilized the crash scenario typology to examine traffic crashes, these studies focus on all types of motor vehicle crashes thus the method might not apply to VRU crashes. Therefore, to better understand the context and causes of child VRU crashes on the U.S. road, this paper proposes a multi-step framework to define crash scenario typology based on the Fatality Analysis Reporting System (FARS) and the Crash Report Sampling System (CRSS). A comprehensive examination of the data elements in FARS and CRSS was first conducted to determine elements that could facilitate crash scenario identification from a systematic perspective. A follow-up context description depicts the typical behavioral, environmental, and vehicular conditions associated with an identified crash scenario.
Technical Paper

The Effect of Exhaust Emission Conditions and Coolant Temperature on the Composition of Exhaust Gas Recirculation Cooler Deposits

2023-04-11
2023-01-0438
Exhaust Gas Recirculation (EGR) coolers are widely used on diesel engines to reduce in-cylinder NOx formation. A common problem is the accumulation of a fouling layer inside the heat exchanger, mainly due to thermophoresis that leads to deposition of particulate matter (PM), and condensation of hydrocarbons (HC) from the diesel exhaust. From a recent investigation of deposits from field samples of EGR coolers, it was confirmed that the densities of their deposits were much higher than reported in previous studies. In this study, the experiments were conducted in order to verify hypotheses about deposit growth, especially densification. An experimental set up which included a custom-made shell and tube type heat exchanger with six surrogate tubes was designed to control flow rate independently, and was installed on a 1.9 L L-4 common rail turbo diesel engine.
Journal Article

A Standard Set of Courses to Assess the Quality of Driving Off-Road Combat Vehicles

2023-04-11
2023-01-0114
Making manned and remotely-controlled wheeled and tracked vehicles easier to drive, especially off-road, is of great interest to the U.S. Army. If vehicles are easier to drive (especially closed hatch) or if they are driven autonomously, then drivers could perform additional tasks (e.g., operating weapons or communication systems), leading to reduced crew sizes. Further, poorly driven vehicles are more likely to get stuck, roll over, or encounter mines or improvised explosive devices, whereby the vehicle can no longer perform its mission and crew member safety is jeopardized. HMI technology and systems to support human drivers (e.g., autonomous driving systems, in-vehicle monitors or head-mounted displays, various control devices (including game controllers), navigation and route-planning systems) need to be evaluated, which traditionally occurs in mission-specific (and incomparable) evaluations.
Technical Paper

Multi-Objective Bayesian Optimization Supported by Deep Gaussian Processes

2023-04-11
2023-01-0031
A common scenario in engineering design is the evaluation of expensive black-box functions: simulation codes or physical experiments that require long evaluation times and/or significant resources, which results in lengthy and costly design cycles. In the last years, Bayesian optimization has emerged as an efficient alternative to solve expensive black-box function design problems. Bayesian optimization has two main components: a probabilistic surrogate model of the black-box function and an acquisition functions that drives the design process. Successful Bayesian optimization strategies are characterized by accurate surrogate models and well-balanced acquisition functions. The Gaussian process (GP) regression model is arguably the most popular surrogate model in Bayesian optimization due to its flexibility and mathematical tractability. GP regression models are defined by two elements: the mean and covariance functions.
Research Report

Legal Issues Facing Automated Vehicles, Facial Recognition, and Privacy Rights

2022-07-28
EPR2022016
Facial recognition software (FRS) is a form of biometric security that detects a face, analyzes it, converts it to data, and then matches it with images in a database. This technology is currently being used in vehicles for safety and convenience features, such as detecting driver fatigue, ensuring ride share drivers are wearing a face covering, or unlocking the vehicle. Public transportation hubs can also use FRS to identify missing persons, intercept domestic terrorism, deter theft, and achieve other security initiatives. However, biometric data is sensitive and there are numerous remaining questions about how to implement and regulate FRS in a way that maximizes its safety and security potential while simultaneously ensuring individual’s right to privacy, data security, and technology-based equality.
Research Report

Automated Vehicles: A Human/Machine Co-learning Perspective

2022-04-27
EPR2022009
Automated vehicles (AVs)—and the automated driving systems (ADSs) that enable them—are increasing in prevalence but remain far from ubiquitous. Progress has occurred in spurts, followed by lulls, while the motor transportation system learns to design, deploy, and regulate AVs. Automated Vehicles: A Human/Machine Co-learning Experience focuses on how engineers, regulators, and road users are all learning about a technology that has the potential to transform society. Those engaged in the design of ADSs and AVs may find it useful to consider that the spurts and lulls and stakeholder tussles are a normal part of technology transformations; however, this report will provide suggestions for effective stakeholder engagement. Click here to access the full SAE EDGETM Research Report portfolio.
Technical Paper

Infrastructure-Based LiDAR Monitoring for Assessing Automated Driving Safety

2022-03-29
2022-01-0081
The successful deployment of automated vehicles (AVs) has recently coincided with the use of off-board sensors for assessments of operational safety. Many intersections and roadways have monocular cameras used primarily for traffic monitoring; however, monocular cameras may not be sufficient to allow for useful AV operational safety assessments to be made in all operational design domains (ODDs) such as low ambient light and inclement weather conditions. Additional sensor modalities such as Light Detecting and Ranging (LiDAR) sensors allow for a wider range of scenarios to be accommodated and may also provide improved measurements of the Operational Safety Assessment (OSA) metrics previously introduced by the Institute of Automated Mobility (IAM).
Technical Paper

Injury Severity Prediction Algorithm Based on Select Vehicle Category for Advanced Automatic Collision Notification

2022-03-29
2022-01-0834
With the evolution of telemetry technology in vehicles, Advanced Automatic Collision Notification (AACN), which detects occupants at risk of serious injury in the event of a crash and triages them to the trauma center quickly, may greatly improve their treatment. An Injury Severity Prediction (ISP) algorithm for AACN was developed using a logistic regression model to predict the probability of sustaining an Injury Severity Score (ISS) 15+ injury. National Automotive Sampling System Crashworthiness Data System (NASS-CDS: 1999-2015) and model year 2000 or later were filtered for new case selection criteria, based on vehicle body type, to match Subaru vehicle category. This new proposed algorithm uses crash direction, change in velocity, multiple impacts, seat belt use, vehicle type, presence of any older occupant, and presence of any female occupant.
Journal Article

Estimating the Workload of Driving Using Video Clips as Anchors

2022-03-29
2022-01-0805
As new technology is added to vehicles and traffic congestion increases, there is a concern that drivers will be overloaded. As a result, there has been considerable interest in measuring driver workload. This can be achieved using many methods, with subjective assessments such as the NASA Task Loading Index (TLX) being most popular. Unfortunately, the TLX is unanchored, so there is no way to compare TLX values between studies, thus limiting the value of those evaluations. In response, a method was created to anchor overall workload ratings. To develop this method, 24 subjects rated the workload of clips of forward scenes collected while driving on rural, urban, and limited-access roads in relation to 2 looped anchor clips. Those clips corresponded to Level of Service (LOS) A and E (light and heavy traffic) and were assigned values of 2 and 6 respectively.
Technical Paper

Evaluation of Operational Safety Assessment (OSA) Metrics for Automated Vehicles in Simulation

2021-04-06
2021-01-0868
The operational safety of automated driving system (ADS)-equipped vehicles (AVs) must be quantified using well-defined metrics in order to gain an unambiguous understanding of the level of risk associated with AV deployment on public roads. In this research, efforts to evaluate the operational safety assessment (OSA) metrics introduced in prior work by the Institute of Automated Mobility (IAM) are described. An initial validation of the proposed set of OSA metrics involved using the open-source simulation software Car Learning to Act (CARLA) and Scenario Runner, which are used to place a subject vehicle in selected scenarios and obtain measurements for the various relevant OSA metrics. Car following scenarios were selected from the list of 37 pre-crash scenarios identified by the National Highway Traffic Safety Administration (NHTSA) as the most common driving situations that lead to crash events involving two light vehicles.
Technical Paper

Experimental Validation of Eco-Driving and Eco-Heating Strategies for Connected and Automated HEVs

2021-04-06
2021-01-0435
This paper presents experimental results that validate eco-driving and eco-heating strategies developed for connected and automated vehicles (CAVs). By exploiting vehicle-to-infrastructure (V2I) communications, traffic signal timing, and queue length estimations, optimized and smoothed speed profiles for the ego-vehicle are generated to reduce energy consumption. Next, the planned eco-trajectories are incorporated into a real-time predictive optimization framework that coordinates the cabin thermal load (in cold weather) with the speed preview, i.e., eco-heating. To enable eco-heating, the engine coolant (as the only heat source for cabin heating) and the cabin air are leveraged as two thermal energy storages. Our eco-heating strategy stores thermal energy in the engine coolant and cabin air while the vehicle is driving at high speeds, and releases the stored energy slowly during the vehicle stops for cabin heating without forcing the engine to idle to provide the heating source.
Journal Article

Tanker Truck Rollover Avoidance Using Learning Reference Governor

2021-04-06
2021-01-0256
Tanker trucks are commonly used for transporting liquid material including chemical and petroleum products. On the one hand, tanker trucks are susceptible to rollover accidents due to the high center of gravity when they are loaded and due to the liquid sloshing effects when the tank is partially filled. On the other hand, tanker truck rollover accidents are among the most dangerous vehicle crashes, frequently resulting in serious to fatal driver injuries and significant property damage, because the liquid cargo is often hazardous and flammable. Therefore, effective schemes for tanker truck rollover avoidance are highly desirable and can bring a considerable amount of societal benefit. Yet, the development of such schemes is challenging, as tanker trucks can operate in various environments and be affected by manufacturing variability, aging, degradation, etc. This paper considers the use of Learning Reference Governor (LRG) for tanker truck rollover avoidance.
Journal Article

Infrastructure-Based Sensor Data Capture Systems for Measurement of Operational Safety Assessment (OSA) Metrics

2021-04-06
2021-01-0175
The operational safety of automated driving system (ADS)-equipped vehicles (AVs) needs to be quantified for an understanding of risk, requiring the measurement of parameters as they relate to AVs and human driven vehicles alike. In prior work by the Institute of Automated Mobility (IAM), operational safety metrics were introduced as part of an operational safety assessment (OSA) methodology that provide quantification of behavioral safety of AVs and human-driven vehicles as they interact with each other and other road users. To calculate OSA metrics, the data capture system must accurately and precisely determine position, velocity, acceleration, and geometrical relationships between various safety-critical traffic participants. The design of an infrastructure-based system that is intended to capture the data required for calculation of OSA metrics is addressed in this paper.
Journal Article

Field Data Study of the Effect of Knee Airbags on Lower Extremity Injury in Frontal Crashes

2021-04-06
2021-01-0913
Knee airbags (KABs) are one countermeasure in newer vehicles that could influence lower extremity (LEX) injury, the most frequently injured body region in frontal crashes. To determine the effect of KABs on LEX injury for drivers in frontal crashes, the analysis examined moderate or greater LEX injury (AIS 2+) in two datasets. Logistic regression considered six main effect factors (KAB deployment, BMI, age, sex, belt status, driver compartment intrusion). Eighty-five cases with KAB deployment from the Crash Injury Research and Engineering Network (CIREN) database were supplemented with 8 cases from the International Center for Automotive Medicine (ICAM) database and compared to 289 CIREN non-KAB cases. All cases evaluated drivers in frontal impacts (11 to 1 o’clock Principal Direction of Force) with known belt use in 2004 and newer model year vehicles. Results of the CIREN/ICAM dataset were compared to analysis of a similar dataset from NASS-CDS (5441 total cases, 418 KAB-deployed).
X