Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Research on the Anti-Shuffle Control for Hybrid Electric Vehicles in the Pure Electric Mode

2024-04-09
2024-01-2713
In hybrid vehicles, the drive motor is directly connected to the drive train and the inherent drive train damping is low. When subjected to external disturbance, the low damping characteristics of the transmission system may cause torsional vibration, which will continue to oscillate the transmission system and affect the driving performance of the vehicle. In this paper, we propose a harmonic injection wheel control method based on motor speed to suppress oscillations and improve the driving performance of hybrid electric vehicles. The harmonic injection control method based on motor speed is based on Fourier transform to decompose sinusoidal harmonics based on specific order of motor speed. RLS algorithm is used to estimate the amplitude and phase, and PI control is used to calculate the compensation torque for the actual amplitude and target amplitude. Simulation and test results show that the proposed control strategy is effective in suppressing oscillations.
Technical Paper

Numerical Simulation of Ammonia-Hydrogen Engine Using Low-Pressure Direct Injection (LP-DI)

2024-04-09
2024-01-2118
Ammonia (NH3), a zero-carbon fuel, has great potential for internal combustion engine development. However, its high ignition energy, low laminar burning velocity, narrow range of flammability limits, and high latent heat of vaporization are not conducive for engine application. This paper numerically investigates the feasibility of utilizing ammonia in a heavy-duty diesel engine, specifically through low-pressure direct injection (LP-DI) of hydrogen to ignite ammonia combustion. Due to the lack of a well-corresponding mechanism for the operating conditions of ammonia-hydrogen engines, this study serves only as a trend-oriented prediction. The paper compares the engine's combustion and emission performance by optimizing four critical parameters: excess air ratio, hydrogen energy ratio, ignition timing, and hydrogen injection timing. The results reveal that excessively high hydrogen energy ratios lead to an advanced combustion phase, reducing indicated thermal efficiency.
Technical Paper

Simulation Investigation of Turbulent Jet Ignition (TJI) Combustion in a Dedicated Hybrid Engine under Stoichiometric Condition

2024-04-09
2024-01-2111
Turbulent jet ignition (TJI) combustion using pre-chamber ignition can accelerate the combustion speed in the cylinder and has garnered growing interest in recent years. However, it is complicated for the optimization of the pre-chamber structure and combustion system. This study investigated the effects of the pre-chamber structure and the intake ports on the combustion characteristics of a gasoline engine through CFD simulation. Spark ignition (SI) combustion simulation was also conducted for comparison. The results showed that the design of the pre-chamber that causes the jet flame colliding with walls severely worsen the combustion, increasing the knocking intendency, and decrease the thermal efficiency. Compared with SI combustion mode, the TJI combustion mode has the higher heat transfer loss and lower unburned loss. The well-optimized pre-chamber can accelerate the flame propagation with knock suppression.
Journal Article

Refinements of the Dynamic Inversion Part of Hierarchical 4WIS/4WID Trajectory Tracking Controllers

2023-04-11
2023-01-0907
To tackle the over-actuated and highly nonlinear characteristics that four-wheel-independent-steering and four-wheel-independent -driving (4WIS/4WID) vehicles exhibit when tracking aggressive trajectory, a hierarchical controller with layers of computation-intensive modules is commonly adopted. The high-level linear motion controller commands the desired state derivatives of the vehicle to meet the overall trajectory tracking objectives. Then the system dynamic is inversed by the mid-level control allocation layer and the low-level wheel control layer to map the target state derivatives to steering angle and motor torque commands. However, this type of controller is difficult to implement on the embedded hardware onboard since the nonlinear dynamic inversion is typically solved by nonlinear programming.
Technical Paper

Numerical Optimization of the Piston Bowl Geometry and Investigation of the Key Geometric Parameters for the Dual-Mode Dual-Fuel (DMDF) Concept under a Wide Load Range

2022-03-29
2022-01-0782
Focusing on the dual-mode dual-fuel (DMDF) combustion concept, a combined optimization of the piston bowl geometry with the fuel injection strategy was conducted at low, mid, and high loads. By coupling the KIVA-3V code with the enhanced genetic algorithm (GA), a total of 14 parameters including the piston bowl geometric parameters and the injection parameters were optimized with the objective of meeting Euro VI regulations while improving the fuel efficiency. The optimal piston bowl shape coupled with the corresponding injection strategy was summarized and integrated at various loads. Furthermore, the effects of the key geometric parameters were investigated in terms of organizing the in-cylinder flow, influencing the energy distribution, and affecting the emissions. The results indicate that the behavior of the DMDF combustion mode is further enhanced in the aspects of improving the fuel economy and controlling the emissions after the bowl geometry optimization.
Technical Paper

Trajectory Following Control for Automated Drifting of 4WID Vehicles

2022-03-29
2022-01-0911
It is very significant for autonomous vehicles to have the ability to operate beyond the stable handling limits, which plays a vital role in vehicles’ active safety and enhances riding and driving pleasure. For traditional vehicles, it is rather difficult to control the longitudinal speed, sideslip angle and yaw rate simultaneously when drifting along a given trajectory because they are under-actuated. Nevertheless, for a 4-wheel-independent-drive (4WID) vehicle, it is possible and controllable thanks to its over-actuated characteristics. This article designs a trajectory following control strategy for automated drifting of 4WID vehicles. First, a double-track 7 degree of freedom (7DOF) vehicle dynamic model is established, which incorporates longitudinal and lateral load transfer and considers nonlinear tire models. The controller which proposes a hierarchical architecture is then designed.
Technical Paper

Effects of Octane Number and Sensitivity on Combustion of Jet Ignition Engine

2022-03-29
2022-01-0435
Octane number (ON) and octane sensitivity (S), the fuel anti-knock indices, are critical for the design of advanced jet ignition engines. In this study, ten fuels with different research octane number (RON) and varying S were formulated based on ethanol reference fuels (ERFs) to investigate the effect of S on combustion of jet ignition engine. To fully understand S effects, the combustion characteristics under EGR dilution and lean burn were further investigated. The results indicated that increasing S resulted in higher reactivity with shorter ignition delay and combustion duration. The increase of reactivity led to heavier knocking intensity. The competition between the flame speed and the reactivity of the mixture determined the auto-ignition fraction of mixture and the knocking onset crank angle as S varied. Medium S (S=3) was helpful to improve the combustion speed, reduce the auto-ignition fraction of mixture and retard the knocking onset crank angle.
Technical Paper

Analysis of Energy and Exergy Distribution for Improving Fuel Economy of Marine Low-speed Two-stroke Diesel Engine

2022-03-29
2022-01-0392
Increasingly strict emission regulations and unfavorable economic climate bring severe challenges to the energy conservation of marine low-speed engine. Besides traditional methods, the energy and exergy analysis could acknowledge the losses of fuel from a global perspective to further improve the engine efficiency. Therefore, the energy and exergy analysis is conducted for a marine low-speed engine based on the experimental data. Energy analysis shows the exhaust gas occupies the largest proportion of all fuel energy waste, and it rises with the increment of engine load. The heat transfer consumes the second largest proportion, while it is negatively correlated to engine load. The energy analysis indicates that the most effective way to improve the engine efficiency is to reduce the energy wasted by exhaust gas and heat transfer. However, the latter exergy analysis demonstrates that there are other effective approaches to improve the engine efficiency.
Journal Article

Lap Time Optimization and Path Following Control for 4WS & 4WID Autonomous Vehicle

2022-03-29
2022-01-0376
In contrast to a normal vehicle, a 4-wheel steer (4WS) and 4-wheel independent drive (4WID) vehicle provides more flexibilities in vehicle dynamic control and better handling performance, since both the steer angle and drive torque of each wheel can be controlled. However, for motorsports, how much lap time can be improved with such a vehicle is a problem few discussed. So, this paper focuses on the racing line optimization and lap time improvement for a 4WS &4WID vehicle. First, we optimize the racing line and lap time of three given circuits with the genetic algorithm (GA) and interior-point method, and several objective functions are compared. Next, to evaluate the lap time improvement of 4WS & 4WID, a detailed vehicle dynamic model of our 4WS & 4WID platform vehicle is built in Carsim. To follow the racing line, a path following controller which contains a PID speed controller and a model predictive control (MPC) yaw rate controller is built.
Technical Paper

Evolution and Future Development of Vehicle Fuel Specification in China

2021-09-21
2021-01-1201
Fuel quality has a significant influence on the combustion engine operation. In recent years the increasing concerns about environmental protection, energy saving, energy security and the requirements of protecting fuel injection and aftertreatment systems have been major driving forces for the Chinese fuel specification evolution. The major property changes in the evolution of Chinese national gasoline and diesel standards are introduced and the reasons behind these changes are analyzed in this paper. The gasoline fuel development from State I to State VI-B involved a decrease of sulfur, manganese, olefins, aromatics and benzene content. The diesel fuel quality improvement from State I to State VI included achieving low sulfur fuels and a cetane number (CN) increase. Provincial fuel standards, stricter than corresponding national standards, were implemented in economically developed areas in the past.
Technical Paper

Torque Vectoring Control Strategies for Distributed Electric Drive Formula SAE Racing Car

2021-04-06
2021-01-0373
This paper presents a two-layer torque vectoring control strategy for the Formula SAE racing car of Tsinghua University to enhance steering response, lateral stability and track performance. Firstly, the dynamic model of the existing FSAE car is built as parameters of tires, suspensions, motors and aerodynamics are measured and identified. Secondly, this paper develops a two-layer torque vectoring strategy, the upper-layer direct yaw moment (DYC) controller and the lower-layer torque distribution controller are developed in Simulink. The upper-layer sliding mode control DYC controller calculates the target additional yaw moment according to the target yaw rate based on the two-degree-of-freedom (2DOF) reference model, and the sideslip angle is constrained as well.
Technical Paper

Droplet Behaviors of DI Gasoline Wall Impinging Spray by Spray Slicer

2020-04-14
2020-01-1152
Owing to the small size of engines and high injection pressures, it is difficult to avoid the fuel spray impingement on the combustion cylinder wall and piston head in Direct Injection Spark Ignition (DISI) engine, which is a possible source of hydrocarbons and soot emission. As a result, the droplets size and distribution are significantly important to evaluate the atomization and predict the impingement behaviors, such as stick, spread or splash. However, the microscopic behaviors of droplets are seldom reported due to the high density of small droplets, especially under high pressure conditions. In order to solve this problem, a “spray slicer” was designed to cut the spray before impingement as a sheet one to observe the droplets clearly. The experiment was performed in a constant volume chamber under non-evaporation condition, and a mini-sac injector with single hole was used.
Technical Paper

Accelerometer-Based Estimation of Combustion Features for Engine Feedback Control of Compression-Ignition Direct-Injection Engines

2020-04-14
2020-01-1147
An experimental investigation of non-intrusive combustion sensing was performed using a tri-axial accelerometer mounted to the engine block of a small-bore high-speed 4-cylinder compression-ignition direct-injection (CIDI) engine. This study investigates potential techniques to extract combustion features from accelerometer signals to be used for cycle-to-cycle engine control. Selection of accelerometer location and vibration axis were performed by analyzing vibration signals for three different locations along the block for all three of the accelerometer axes. A magnitude squared coherence (MSC) statistical analysis was used to select the best location and axis. Based on previous work from the literature, the vibration signal filtering was optimized, and the filtered vibration signals were analyzed. It was found that the vibration signals correlate well with the second derivative of pressure during the initial stages of combustion.
Technical Paper

Instantaneous PLII and OH* Chemiluminescence Study on Wide Distillation Fuels, PODEn and Ethanol Blends in a Constant Volume Vessel

2020-04-14
2020-01-0340
The combustion characteristics and soot emissions of three types of fuels were studied in a high pressure and temperature vessel. In order to achieve better volatility, proper cetane number and high oxygen content, the newly designed WDEP fuel was proposed and investigated. It is composed of wide distillation fuel (WD), PODE3-6 mixture (PODEn) and ethanol. For comparison, the test on WD and the mixture of PODEn-ethanol (EP) are also conducted. OH* chemiluminescence during the combustion was measured and instantaneous PLII was also applied to reveal the soot distribution. Abel transformation was adopted to calculate the total soot of axisymmetric flame. The results show that WDEP has similar ignition delays and flame lift-off lengths to those of WD at 870-920 K. But the initial ignition locations of WDEP flame in different cycles were more concentrated, particularly under the condition of low oxygen atmosphere.
Technical Paper

Minimization of Electric Heating of the Traction Induction Machine Rotor

2020-04-14
2020-01-0562
The article solves the problem of reducing electric power losses of the traction induction machine rotor to prevent its overheating in nominal and high-load modes. Electric losses of the rotor power are optimized by the stabilization of the main magnetic flow of the electric machine at a nominal level with the amplitude-frequency control in a wide range of speeds and increased loads. The quasi-independent excitation of the induction machine allows us to increase the rigidity of mechanical characteristics, decrease the rotor slip at nominal loads and overloads and significantly decrease electrical losses in the rotor as compared to other control methods. The article considers the technology of converting the power of individual phases into a single energy flow using a three-phase electric machine equivalent circuit and obtaining an energy model in the form of equations of instantaneous active and reactive power balance.
Technical Paper

Comparison of Spray Collapses from Multi-Hole and Single-Hole Injectors Using High-Speed Photography

2020-04-14
2020-01-0321
In this paper, the differences between multi-hole and single-hole spray contour under the same conditions were compared by using high-speed photography. The difference between the contour area of multi-hole and that of single-hole spray was used as a parameter to describe the degree of spray collapse. Three dimensionless parameters (i.e. degree of superheat, degree of undercooling, and nozzle pressure ratio) were applied to characterize inside-nozzle thermodynamic, outside-nozzle thermodynamic and kinetic factors, respectively. In addition, the relationship between the three dimensionless parameters and the spray collapse was analyzed. A semi-empirical equation was proposed for evaluation of the degree of collapse based on dimensionless parameters of flash and non-flash boiling sprays respectively.
Journal Article

The Effect of EGR Dilution on the Heat Release Rates in Boosted Spark-Assisted Compression Ignition (SACI) Engines

2020-04-14
2020-01-1134
This paper presents an experimental investigation of the impact of EGR dilution on the tradeoff between flame and end-gas autoignition heat release in a Spark-Assisted Compression Ignition (SACI) combustion engine. The mixture was maintained stoichiometric and fuel-to-charge equivalence ratio (ϕ′) was controlled by varying the EGR dilution level at constant engine speed. Under all conditions investigated, end-gas autoignition timing was maintained constant by modulating the mixture temperature and spark timing. Experiments at constant intake pressure and constant spark timing showed that as ϕ′ is increased, lower mixture temperatures are required to match end-gas autoignition timing. Higher ϕ′ mixtures exhibited faster initial flame burn rates, which were attributed to the higher laminar flame speeds immediately after spark timing and their effect on the overall turbulent burning velocity.
Technical Paper

Control of Ignition Timing and Combustion Phase by Means of Injection Strategy for Jet-Controlled Compression Ignition Mode in a Light Duty Diesel Engine

2020-04-14
2020-01-0555
Controllability of ignition timing and combustion phase by means of dual-fuel direct injection strategy in jet-controlled compression ignition mode were investigated in a light-duty prototype diesel engine. Blended fuel with lower reactivity was delivered in the early period of compression stroke to form the premixed charge, while diesel fuel which has higher reactivity was injected near TDC to trigger the ignition. The effects of several important injection parameters including pre-injection timing, jet-injection timing, pre- injection pressure and ratio of pre-injection in the total heat value of injected fuel were discussed. Numerical Simulation by using CFD software was also conducted under similar operating conditions. The experimental results indicate that the jet-injection timing shows robust controllability on the start of combustion under all the engine load conditions.
Technical Paper

Impact of Fuel Properties on GDI Injector Deposit Formation and Particulate Matter Emissions

2020-04-14
2020-01-0388
Gasoline Direct Injection (GDI) engines show advantages in reducing fuel consumption and gaseous pollution emissions when compared to Port Fuel Injection (PFI) engines. However, particulate matter emissions are an essential issue for GDI engine development due to increasingly stringent worldwide emission regulations. Previous studies have shown that gasoline fuel compositions, as well as deposits formed in GDI fuel injectors, can affect emissions in the GDI engine. In this work, the impact of gasoline fuel properties on forming injector deposits and the resulting effect on particulate emissions were investigated using a modern Chinese GDI engine. Six test fuels with different properties involving changes in olefins, aromatics, heavy (C9/C9+) aromatics, T90 and deposit control additive (DCA) were prepared based on the gasoline survey results from the Chinese gasoline fuel market and the China 6 gasoline fuel standard limits.
Technical Paper

Active Damping Control of Torsional Vibration in a Diesel Hybrid Powertrain

2019-12-19
2019-01-2342
This paper has designed a real time control algorithm to use ISG motor actively compensate the torque ripple produced by the engine, to reduce torsional vibration. This paper consists of 3 parts. In the first section, this paper has introduced the research object and its modification for experiments. Then the development of control strategy is presented. The engine dynamic model is built, and real-time control with a feedforward unit and a feedback unit is derived. Encoder and cylinder pressure is used for engine torque estimator. Then the ISG motor output the counter-waveform to make the overall output smooth. In order to verify the effectiveness of the control strategy, the final section has established a test bench, where two experiments are carried out. One of the experimental conditions is to set the engine at a constant operating point, while the other is to crank the engine from 0 rpm to idle speed with ISG motor.
X