Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

A Hybrid Electric Vehicle Thermal Management System - Nonlinear Controller Design

2015-04-14
2015-01-1710
The components in a hybrid electric vehicle (HEV) powertrain include the battery pack, an internal combustion engine, and the electric machines such as motors and possibly a generator. These components generate a considerable amount of heat during driving cycles. A robust thermal management system with advanced controller, designed for temperature tracking, is required for vehicle safety and energy efficiency. In this study, a hybridized mid-size truck for military application is investigated. The paper examines the integration of advanced control algorithms to the cooling system featuring an electric-mechanical compressor, coolant pump and radiator fans. Mathematical models are developed to numerically describe the thermal behavior of these powertrain elements. A series of controllers are designed to effectively manage the battery pack, electric motors, and the internal combustion engine temperatures.
Technical Paper

Series Hydraulic Hybrid System for a Passenger Car: Design, Integration and Packaging Study

2012-04-16
2012-01-1031
This paper is on the development process of a hydraulic hybrid passenger vehicle. A subcompact passenger vehicle is chosen for modification into a series hydraulic hybrid with the aim of achieving a fuel economy of 100 MPG (2.35 L/100km) on the Urban Dynamometer Driving Schedule (UDDS). This work develops a methodology for simultaneously designing a powertrain and power management strategy of a series hydraulic hybrid. The design process was initiated by developing a system level model validated using engine and hydraulic pump/motor testing by the US EPA at the National Vehicle and Fuel Efficiency Laboratory (NVFEL). Parametric studies were performed in order to determine the size of the pump/motors and accumulators. Several candidate engines were tested and the system models were used to determine which one could provide the best fuel economy while meeting performance constraints.
X