Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Near-Term Fuel Economy Potential for Light-Duty Trucks

2002-06-03
2002-01-1900
This paper assesses the technical potential, costs and benefits of improving the fuel economy of light-duty trucks over the next five to ten years in the United States using conventional technologies. We offer an in-depth analysis of several technology packages based on a detailed vehicle system modeling approach. Results are provided for fuel economy, cost, oil savings and reductions in greenhouse gas emissions. We examine a range of refinements to body, powertrain and electrical systems, reflecting current best practice and emerging technologies such as lightweight materials, high-efficiency IC engines, integrated starter-generator, 42 volt electrical system and advanced transmission. In this paper, multiple technological pathways are identified to significantly improve fleet average light-duty-truck fuel economy to 27.0 MPG or higher with net savings to consumers.
Technical Paper

Emissions from Modern Passenger Cars with Malfunctioning Emissions Controls

1996-02-01
960067
Malfunctioning emission controls continue to be a major source of emissions from in-use vehicles. We analyze two sources of data on cars with malfunctioning emissions controls: remote sensing surveys and dynamometer tests of cars in the condition they were received. Our analysis indicates that roughly 8 percent of relatively new (2- to 5-year old), modern technology (fuel-injected) cars have malfunctioning emission controls. There is a wide range in the probability of malfunction of specific models, from zero to over 20 percent. Possible causes of high model-specific malfunction probability are poor initial design and/or manufacture.
Technical Paper

Fuel Economy Analysis for a Hybrid Concept Car Based on a Buffered Fuel-Engine Operating at an Optimal Point

1995-02-01
950958
A hybrid car is conceptually described and analyzed which meets the goal of a factor of three improvement in fuel economy set by the government-industry collaboration, Partnership for a New Generation of Vehicles, announced Sept. 29, 1993. This car combines an internal combustion engine with a low-energy, but high-power capacity, storage unit, such as a capacitor or flywheel. The storage capacity is one-half kWh. All energy requirements are ultimately met from the fuel tank. Essentially all the performance achievements of current conventional cars are met by this hybrid. Two versions of the hybrid are considered: one in which the vehicle loads are the same as those of the average 1993 car, but the drive train is replaced with a hybrid system, and one, where, in addition, the vehicle loads are reduced, at fixed performance and interior volume, to levels slightly beyond the best achievements in current production vehicles.
X