Refine Your Search

Topic

Author

Search Results

Technical Paper

Deformation Analysis on In-Plane Loading of Prismatic Cell

2024-04-09
2024-01-2060
The collision accidents of electric vehicles are gradually increasing, and the response of battery cell under mechanical abuse conditions has attracted more and more attention. In the real collision, the mechanical load on battery generally has the following characteristics, including multiple loading directions, dynamic impact and blunt intrusion. Therefore, it is necessary to study the mechanical response and deformation of battery under complex loading, especially in-plane dynamic loading condition. According to the actual accident, we designed the constrained blunt compression test of the battery in different speeds and directions. For out-of-plane loading, the structural stiffness of battery increases obviously and the fracture is advanced compared with the corresponding quasi-static tests. For in-plane constrained loading, the force response can be approximately divided into two linear segments, in which the structural stiffness increases abruptly after the inflection point.
Technical Paper

Extended Deep Learning Model to Predict the Electric Vehicle Motor Operating Point

2024-04-09
2024-01-2551
The transition from combustion engines to electric propulsion is accelerating in every coordinate of the globe. The engineers had strived hard to augment the engine performance for more than eight decades, and a similar challenge had emerged again for electric vehicles. To analyze the performance of the engine, the vector engine operating point (EOP) is defined, which is common industry practice, and the performance vector electric vehicle motor operating point (EVMOP) is not explored in the existing literature. In an analogous sense, electric vehicles are embedded with three primary components, e.g., Battery, Inverter, Motor, and in this article, the EVMOP is defined using the parameters [motor torque, motor speed, motor current]. As a second aspect of this research, deep learning models are developed to predict the EVMOP by mapping the parameters representing the dynamic state of the system in real-time.
Technical Paper

Research on the Oscillation Reduction Control During High Voltage Battery Failure in Hybrid Electric Vehicles

2024-04-09
2024-01-2717
In order to achieve seamless mode switching control for hybrid electric vehicles (HEVs) in the event of battery failure, we propose a motor voltage-controlled mode switching method that eliminates power interruptions. This approach is based on an analysis of the dual-motor hybrid configuration's mode switching. We analyze the overall vehicle operation when the high-voltage battery occurs in different hybrid modes. To ensure that the vehicle can still function like a conventional car under such circumstances, we introduce a novel "voltage control" mode. In this mode, instead of operating in its traditional torque control manner, the P1 motor adopts a voltage control strategy. The P1 controller's variable becomes "voltage," and VCU sends the motor's working mode switching request and PCM finishes the mode transition. During system operation, the P1 motor promptly responds to these target voltages to maintain bus voltage within a normal range.
Technical Paper

Research on Motor Control and Application in Dual Motor Hybrid System

2024-04-09
2024-01-2220
This paper analyzes the current control, mode control and boost strategy of permanent magnet synchronous motor in dual hybrid system, which has good stability and robustness. Current control includes current vector control, MTPA control, flux weakening control, PI current control and SVPWM control. Motor mode includes initialization mode, normal mode, fault mode, active discharge mode, power off mode, battery heating mode and boost mode. The boost strategy of the hybrid system is based on boost mode management, boost target voltage determination and boost PI control. The specific content is as follows: Boost mode control. Boost mode includes initial mode, normal mode, off mode and fault mode. Boost target voltage is determined. Boost converter is controlled by variable voltage, which depends on the operation status of the motor and generator..
Technical Paper

Estimating Battery State-of-Charge using Machine Learning and Physics-Based Models

2023-04-11
2023-01-0522
Lithium-ion and Lithium polymer batteries are fast becoming ubiquitous in high-discharge rate applications for military and non-military systems. Applications such as small aerial vehicles and energy transfer systems can often function at C-rates greater than 1. To maximize system endurance and battery health, there is a need for models capable of precisely estimating the battery state-of-charge (SoC) under all temperature and loading conditions. However, the ability to perform state estimation consistently and accurately to within 1% error has remained unsolved. Doing so can offer enhanced endurance, safety, reliability, and planning, and additionally, simplify energy management. Therefore, the work presented in this paper aims to study and develop experimentally validated mathematical models capable of high-accuracy battery SoC estimation.
Technical Paper

Light-duty Plug-in Electric Vehicles in China: Evolution, Competition, and Outlook

2023-04-11
2023-01-0891
China's plug-in electric vehicle (PEV) market with stocks at 7.8 million is the world's largest in 2021, and it accounts for half of the global PEV growth in 2021. The PEV market in China has dramatically evolved since the pandemic in 2020: over 20% of all new PEV sales are from China by mid-2022. Recent features of PEV market dynamics, consumer acceptance, policies, and infrastructure have important implications for both the global energy market and manufacturing stakeholders. From the perspective of demand pull-supply push, this study analyzes China's PEV industry with a market dynamics framework by reviewing sales, product and brand, infrastructure, and government policies from the last few years and outlooking the development of the new government’s 14th Five-Year Plan (2021-2025).
Technical Paper

Neural Network Model to Predict the Thermal Operating Point of an Electric Vehicle

2023-04-11
2023-01-0134
The automotive industry widely accepted the launch of electric vehicles in the global market, resulting in the emergence of many new areas, including battery health, inverter design, and motor dynamics. Maintaining the desired thermal stress is required to achieve augmented performance along with the optimal design of these components. The HVAC system controls the coolant and refrigerant fluid pressures to maintain the temperatures of [Battery, Inverter, Motor] in a definite range. However, identifying the prominent factors affecting the thermal stress of electric vehicle components and their effect on temperature variation was not investigated in real-time. Therefore, this article defines the vector electric vehicle thermal operating point (EVTHOP) as the first step with three elements [instantaneous battery temperature, instantaneous inverter temperature, instantaneous stator temperature].
Technical Paper

Development of Detailed Model and Simplified Model of Lithium-Ion Battery Module under Mechanical Abuse

2022-12-16
2022-01-7120
In order to obtain a good understanding of mechanical behaviors of lithium-ion battery modules in electric vehicles, comprehensive experimental and numerical investigations were performed in the study. Mechanical indentation tests with different indentation heads, different loading directions and different impact speeds were performed on battery modules with prismatic cells. To mitigate thermal runaway, only fully discharged battery modules were used. The force-displacement responses and open circuit voltage were recorded and compared. It was found that the battery modules experienced different failure modes when subjected to mechanical abuse. Besides internal short circuit of cells, external short circuit from bus bar and vapor leakage of electrolyte were also found to deteriorate the mechanical and electrical integrity of the tested modules. Mechanical anisotropy and dynamic effect were found on the battery module.
Technical Paper

In-situ Mechanical Characterization of Compression Response of Anode Coating Materials through Inverse Approach

2022-12-16
2022-01-7121
In this decade, the detailed multi-layer FE model is always applied for investigating the mechanical behavior of Li-ion batteries under mechanical abuse. However, establishing a detailed model of different types of batteries requires a series of material characterization of components. To improve the efficiency of the procedure of component calibration, we introduce a procedure of automatic coating material characterization as an example to represent the strategy. The proposed method is constructing a response solver through MATLAB to predict the mechanical behavior of the coating specimen's representative volume element (RVE) under designated test conditions. The coating material is represented through Drucker-Prager-Cap (DPC) model. All parameters, including boundary conditions and material parameters, are included in this solver.
Technical Paper

Rule-Based Power Management Strategy of Electric-Hydraulic Hybrid Vehicles: Case Study of a Class 8 Heavy-Duty Truck

2022-03-29
2022-01-0736
Mobility in the automotive and transportation sectors has been experiencing a period of unprecedented evolution. A growing need for efficient, clean and safe mobility has increased momentum toward sustainable technologies in these sectors. Toward this end, battery electric vehicles have drawn keen interest and their market share is expected to grow significantly in the coming years, especially in light-duty applications such as passenger cars. Although the battery electric vehicles feature high performance and zero tailpipe emission characteristics, economic and technical issues such as battery cost, driving range, recharging time and infrastructure remain main hurdles that need to be fully addressed. In particular, the low power density of the battery limits its broad adoption in heavy-duty applications such as class 8 semi-trailer trucks due to the required size and weight of the battery and electric motor.
Technical Paper

Safety Comparison of Geometric Configurations of Electric Vehicle Battery under Side Pole Impact

2022-03-29
2022-01-0265
Batteries have various sizes and can be configured into different layouts in battery pack on electric vehicles. Crash safety performance is one of the key requirements in choosing battery geometric characteristics and designing layout of battery cells in battery pack. In this study, we compared impact responses of different configurations and geometric characteristics of battery cells under side pole impact. The side pole impact is a relatively dangerous collision type for electric vehicles, often causing large deformation and damage to the battery. Using a production battery pack, we first conducted side pole impact tests with sled tester, and then simulated the test configuration.
Technical Paper

Experimental Validation of Eco-Driving and Eco-Heating Strategies for Connected and Automated HEVs

2021-04-06
2021-01-0435
This paper presents experimental results that validate eco-driving and eco-heating strategies developed for connected and automated vehicles (CAVs). By exploiting vehicle-to-infrastructure (V2I) communications, traffic signal timing, and queue length estimations, optimized and smoothed speed profiles for the ego-vehicle are generated to reduce energy consumption. Next, the planned eco-trajectories are incorporated into a real-time predictive optimization framework that coordinates the cabin thermal load (in cold weather) with the speed preview, i.e., eco-heating. To enable eco-heating, the engine coolant (as the only heat source for cabin heating) and the cabin air are leveraged as two thermal energy storages. Our eco-heating strategy stores thermal energy in the engine coolant and cabin air while the vehicle is driving at high speeds, and releases the stored energy slowly during the vehicle stops for cabin heating without forcing the engine to idle to provide the heating source.
Journal Article

A Study on Parameter Variation of Cells Effects on Battery Groups with Different Topologies and Load Profiles

2021-04-06
2021-01-0756
To satisfy the power and energy requirement of the systems, such as electrical vehicles, the battery packs are constructed with hundreds of single cells connected in series and parallel connection. The most significant difference between a single cell and a battery pack is cell-to-cell variation. Not only does cell-to-cell variation have a big effect on the available energy and power of the battery packs, but also it causes early degradation of battery and potential safety issues. The cell variation effects on battery packs are widely studied because it is of great significance for battery sorting and management scheme. In this paper, battery pack inconsistency is clearly defined and the resulting battery capacity loss and aging acceleration problems are analyzed in detail. A comprehensive LiFePO4 battery pack model was established, which has taken into account cell-to-cell variation, thermal model, capacity degradation, resistance increasing and different battery topologies.
Technical Paper

Mechanical Anisotropy and Strain-Rate Dependency of a Large Format Lithium-Ion Battery Cell: Experiments and Simulations

2021-04-06
2021-01-0755
In order to get a better understanding of the mechanical behavior of lithium-ion battery cells, especially for the mechanical anisotropy and dynamic effect, a series of tests for quasi-static indentation and dynamic impact tests has been designed. In the study, mechanical indentation tests with different indentation heads, different loading directions and different impact speeds were performed on a type of large format prismatic lithium-ion battery cells and jellyrolls of them. To mitigate thermal runaway, only fully-discharged cells and jellyrolls were used. The force-displacement response and open circuit voltage (OCV) were recorded and compared. It shows that jellyroll and battery cell have apparent mechanical anisotropy and strain-rate effect. The stiffness of jellyroll and cell in out-of-plane direction is much larger than that in two in-plane directions.
Technical Paper

Dynamic Load Identification for Battery Pack Bolt Based on Machine Learning

2020-04-14
2020-01-0865
Batteries are exposed to dynamic load during vehicle driving. It is significant to clarify the load input of the battery system during vehicle driving for battery pack structural design and optimization. Currently, bolt connection is mostly applied for battery pack constraint to vehicle, as well as for module assembly inside the pack. However, accurate bolt load is always difficult to obtain, while directly force measurement is expensive and time consuming in engineering. In this paper, a precise data driven model based on Elman neural network is established to identify the dynamic bolt loads of the battery pack, using tested acceleration data near bolts. The dynamic bolt force data is measured at the same time with the acceleration data during vehicle running in different driving conditions, utilizing customized bolt force sensors.
Technical Paper

Mechanical Response of Laterally-Constrained Prismatic Battery Cells under Local Loading

2020-04-14
2020-01-0200
The crash safety of lithium-ion batteries has received great attention in recent years because of their growing popularity in electric vehicles. However, the safety issues of prismatic batteries have not been thoroughly studied; in particular, the mechanical responses of prismatic battery cells with lateral constraints under varied loading conditions still remain unclear. In this study, indentation tests are conducted to study the mechanical response of prismatic battery cells. Fixtures providing lateral constraint which simulates the real packing situation in battery module are designed. Firstly, the effects of lateral constraints on coupled mechanical and electrical responses of prismatic battery cells are analyzed and discussed. Secondly, dynamic indentation tests of prismatic cells with lateral constraints are carried out. The response of the stacked batteries under local loading is revealed.
Technical Paper

Fuel Cell Vehicles: An Opportunity for China's Greenhouse Gas Reduction

2019-12-19
2019-01-2263
Fuel cell vehicle and battery electric vehicle are two environmentally benign vehicle technology types possibly meeting the zero-emission regulations in the future. The premise is they can achieve parity with conventional vehicle both environmentally and economically. Besides, it is necessary to distinguish which technology is more suitable in China's current and future context. This paper compares their cost-effectiveness for reducing greenhouse gas emissions, examining the life-cycle greenhouse gas emissions of conventional gasoline vehicle, battery electric vehicle and fuel cell vehicle in China's energy context under three different scenarios. The results indicate that under the 500km drive range, fuel cell vehicles are less competitive than battery electric vehicles currently. Fuel cell vehicles generate much more greenhouse gas emissions than battery vehicles and conventional gasoline vehicles.
Technical Paper

Full Protection Scheme and Energy Optimization Management of the Battery in Internal Combustion Engine Vehicles Based on Power Partitioning Model

2019-04-02
2019-01-1205
As the only energy storage component in the internal combustion engine vehicles (ICEVs), the battery is lack of comprehensive supervision and effective protection. Excessive discharge or aging cannot be detected and dealt with, which may lead to damage of the battery, even startup failure of the vehicle. In this paper, a full protection and optimization management scheme of the battery is proposed, to achieve comprehensive protection of the battery and energy optimization. Firstly, power partitioning model of the battery is established to reveal the battery characteristics in different states, which divides the battery into several function zones. Then, based on the power partitioning model, over discharge protection and graded overcurrent protection method are proposed, to achieve full protection of the battery. Thirdly, energy optimization management strategy based on generator’s multimode operation is introduced.
Technical Paper

Costs, Benefits and Range: Application of Lightweight Technology in Electric Vehicles

2019-04-02
2019-01-0724
The lightweight technology takes an important role in electric vehicle(EV) energy conservation domain, as lighter vehicle means less energy consumed under same condition. In this paper, the typical energy requirement in an NEDC cycle is investigated, and the relationship between lightweight rate and energy consumption reduction effectiveness is given. The benefit of lightweight to EV come from the less battery cost because of less energy requirement. For EVs, with less battery cost, a certain lightweight rate can be obtained with less total cost. On the other hand, if lightweight rate is very high, the battery cost won't be able to cover the lightweight cost. Besides, the relationship between driving range and battery capacity is discussed in this paper. It is found that there is a limitation of EV driving range, which is determined by the battery energy density.
Journal Article

Characterization of Metal Foil in Anisotropic Fracture Behavior with Dynamic Tests

2018-04-03
2018-01-0108
Metal foil is a widely used material in the automobile industry, which not only is the honeycomb barrier material but is also used as current collectors in Li-ion batteries. Plenty of studies proved that the mechanical property of the metal foil is quite different from that of the metal sheet because of the size effect on microscopic scale, as the metal foil shows a larger fracture stress and a lower ductility than the metal sheet. Meanwhile, the fracture behavior and accurate constitutive model of the metal foil with the consideration of the strain rate effect are widely concerned in further studies of battery safety and the honeycomb. This article conducted experiments on 8011H18 aluminum foil, aiming to explore the quasi-static and dynamic tension testing method and the anisotropic mechanical behavior of the very thin foil. Two metal foil dog-bone specimens and three types of notched specimens were tested with a strain rate ranging from 2 × 10−4/s to 40/s and various stress states.
X