Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Near-Term Fuel Economy Potential for Light-Duty Trucks

2002-06-03
2002-01-1900
This paper assesses the technical potential, costs and benefits of improving the fuel economy of light-duty trucks over the next five to ten years in the United States using conventional technologies. We offer an in-depth analysis of several technology packages based on a detailed vehicle system modeling approach. Results are provided for fuel economy, cost, oil savings and reductions in greenhouse gas emissions. We examine a range of refinements to body, powertrain and electrical systems, reflecting current best practice and emerging technologies such as lightweight materials, high-efficiency IC engines, integrated starter-generator, 42 volt electrical system and advanced transmission. In this paper, multiple technological pathways are identified to significantly improve fleet average light-duty-truck fuel economy to 27.0 MPG or higher with net savings to consumers.
Technical Paper

History of Emissions Reduction: Normal Emitters in FTP-type Driving

2001-03-05
2001-01-0229
Information is readily available on how a vehicle model's emissions system performs under certification conditions, but it is not widely known how it performs after years of use. This study predicts the odometer dependence of in-use car emissions, in grams per mile (gpm), over many model years. To do this, model years are analyzed starting in the mid 1980's until the mid 1990's. High emitters are eliminated from the study using a vehicle probability distribution technique. Emissions data was obtained from EPA's long-term Federal Test Procedure (FTP) survey, AAMA, CARB's Light Duty Vehicle Surveillance Program (LDVSP 14), and University of California Riverside CMEM database. The UCR data includes second-by-second engine-out and tailpipe-out emissions. Emissions system durability was found by comparing the emissions of vehicles of the same model year at different odometer readings.
Technical Paper

Development of Second-by-Second Fuel Use and Emissions Models Based on an Early 1990s Composite Car

1997-02-24
971010
Simulation models for second-by-second fuel rate, and engine-out and tailpipe emissions of CO, HC, and NOx from a “composite” car in hot engine and catalyst conditions are presented and tested using Federal Test Procedure Revision Project (FTPRP) data from 15 1991-1994 cars. The models are constructed as a combination of simple science and curve fitting to the FTPRP data. The models are preliminary, the simplest models being presented to illustrate how much can be predicted with very few parameters. Fuel rate and engine out emissions of all three pollutants are accurately predicted. The tailpipe emissions models are only moderately successful, largely because we are only moderately successful in predicting catalyst pass fractions during low power driving. Nevertheless, the composite car shows regular emissions behavior, and these are modeled effectively.
X