Refine Your Search

Topic

Author

Search Results

Journal Article

Field Data Study of the Effect of Knee Airbags on Lower Extremity Injury in Frontal Crashes

2021-04-06
2021-01-0913
Knee airbags (KABs) are one countermeasure in newer vehicles that could influence lower extremity (LEX) injury, the most frequently injured body region in frontal crashes. To determine the effect of KABs on LEX injury for drivers in frontal crashes, the analysis examined moderate or greater LEX injury (AIS 2+) in two datasets. Logistic regression considered six main effect factors (KAB deployment, BMI, age, sex, belt status, driver compartment intrusion). Eighty-five cases with KAB deployment from the Crash Injury Research and Engineering Network (CIREN) database were supplemented with 8 cases from the International Center for Automotive Medicine (ICAM) database and compared to 289 CIREN non-KAB cases. All cases evaluated drivers in frontal impacts (11 to 1 o’clock Principal Direction of Force) with known belt use in 2004 and newer model year vehicles. Results of the CIREN/ICAM dataset were compared to analysis of a similar dataset from NASS-CDS (5441 total cases, 418 KAB-deployed).
Technical Paper

Warpage Prediction on Injection Molded Semi-Crystalline Thermoplastics

2018-04-03
2018-01-0149
Warpage is the distortion induced by inhomogeneous shrinkage during injection molding of plastic parts. Uncontrolled warpage will result in dimensional instability and bring a lot of challenges to the mold design and part assembly. Current commercial simulation software for injection molding cannot provide consistently accurate warpage prediction, especially for semi-crystalline thermoplastics. In this study, the root cause of inconsistency in warpage prediction has been investigated by using injection molded polypropylene plaques with a wide range of process conditions. The warpage of injection molded plaques are measured and compared to the numerical predictions from Moldex3D. The study shows that with considering cooling rate effect on crystallization kinetics and using of the improved material model for residual stress calculations, good agreements are obtained between experiment and simulation results.
Journal Article

Study on Fatigue Behaviors of Porous T300/924 Carbon Fiber Reinforced Polymer Unidirectional Laminates

2017-03-28
2017-01-0223
Morphological features of voids were characterized for T300/924 12-ply and 16-ply composite laminates at different porosity levels through the implementation of a digital microscopy (DM) image analysis technique. The composite laminates were fabricated through compression molding. Compression pressures of 0.1MPa, 0.3MPa, and 0.5MPa were selected to obtain composite plaques at different porosity levels. Tension-tension fatigue tests at load ratio R=0.1 for composite laminates at different void levels were conducted, and the dynamic stiffness degradation during the tests was monitored. Fatigue mechanisms were then discussed based on scanning electron microscope (SEM) images of the fatigue fracture surfaces. The test results showed that the presence of voids in the matrix has detrimental effects on the fatigue resistance of the material, depending on the applied load level.
Technical Paper

Factors Associated With Abdominal Injury in Frontal, Farside, and Nearside Crashes

2010-11-03
2010-22-0005
The NASS-CDS (1998-2008) and CIREN datasets were analyzed to identify factors contributing to abdominal injury in crash environments where belt use and airbag deployment are common. In frontal impacts, the percentage of occupants sustaining abdominal injury is three times higher for unbelted compared to belted front-row adult occupants (p≺0.0001) at both AIS2+ and AIS3+ injury levels. Airbag deployment does not substantially affect the percentage of occupants who sustain abdominal injuries in frontal impacts (p=0.6171), while belt use reduces the percentage of occupants sustaining abdominal injury in both nearside and farside crashes (p≺0.0001). Right-front passengers in right-side impacts have the highest risk (1.91%) of AIS 3+ abdominal injury (p=0.03). The percentage of occupants with AIS 3+ abdominal injuries does not vary with age for frontal, nearside, or farside impacts.
Technical Paper

Minimizing Read-Through When Creating a Mechanical Score in a Polymer Skin

2007-04-16
2007-01-1220
When weakening a skin/foam bilaminate by mechanically scoring the polymer skin on its back surface, where it is bonded to the foam, the weakness of the bilaminate is determined by the depth of the score groove. The deeper the groove, the weaker the bilaminate. But also, the deeper the groove, the greater the tendency for read-through. Read-through is seeing on the front surface the location of this groove that was created on the back surface. Scored skins, after mounting flat on a glass plate, were viewed with an optical interferometer. It was found that the topographical feature that constituted read-through was a valley. A Silly Putty model was used to better understand the strains induced by mechanical scoring and this understanding was used to identify factors affecting read-through. Blade thickness and the ultimate elongation of the skin material were identified as factors. This work is applicable to certain types of passenger-side seamless airbag systems, for example.
Technical Paper

Upper Extremity Interaction With a Helicopter Side Airbag: Injury Criteria for Dynamic Hyperextension of the Female Elbow Joint

2004-11-01
2004-22-0007
This paper describes a three part analysis to characterize the interaction between the female upper extremity and a helicopter cockpit side airbag system and to develop dynamic hyperextension injury criteria for the female elbow joint. Part I involved a series of 10 experiments with an original Army Black Hawk helicopter side airbag. A 5th percentile female Hybrid III instrumented upper extremity was used to demonstrate side airbag upper extremity loading. Two out of the 10 tests resulted in high elbow bending moments of 128 Nm and 144 Nm. Part II included dynamic hyperextension tests on 24 female cadaver elbow joints. The energy source was a drop tower utilizing a three-point bending configuration to apply elbow bending moments matching the previously conducted side airbag tests. Post-test necropsy showed that 16 of the 24 elbow joint tests resulted in injuries.
Technical Paper

The Development, Validation and Application of a Finite Element Upper Extremity Model Subjected to Air Bag Loading

2003-10-27
2003-22-0004
Both frontal and side air bags can inflict injuries to the upper extremities in cases where the limb is close to the air bag module at the time of impact. Current dummy limbs show qualitatively correct kinematics under air bag loading, but they lack biofidelity in long bone bending and fracture. Thus, an effective research tool is needed to investigate the injury mechanisms involved in air bag loading and to judge the improvements of new air bag designs. The objective of this study is to create an efficient numerical model that exhibits both correct global kinematics as well as localized tissue deformation and initiation of fracture under various impact conditions. The development of the model includes the creation of a sufficiently accurate finite element mesh, the adaptation of material properties from literature into constitutive models and the definition of kinematic constraints at articular joint locations.
Technical Paper

Experimental Testing and Mathematical Modeling of the Interconnected Hydragas Suspension System

2003-03-03
2003-01-0312
The Moulton Hydragas suspension system improves small car ride quality by interconnecting the front and rear wheel on each side of the vehicle via a hydraulic fluid pipe between the front and rear dampers. A Hydragas system from a Rover Group MGF sports car was statically and dynamically tested to generate stiffness and damping coefficient matrices. The goal was to develop the simplest possible model of the system for use in ride quality studies. A linear model showed reasonable accuracy over restricted frequency ranges. A second model used bilinear spring and damping constants, and was more accurate for predicting force at both the front and rear units for frequencies from 1 to 8 Hz. The Hydragas system static stiffness parameters, when used in the model, caused peak force underprediction in the jounce direction. The bilinear model required increased jounce stiffness to account for hysteresis in the rubber elements of the system, and dynamic fluid flow phenomena.
Technical Paper

Analysis of upper extremity response under side air bag loading

2001-06-04
2001-06-0016
Computer simulations, dummy experiments with a new enhanced upper extremity, and small female cadaver experiments were used to analyze the small female upper extremity response under side air bag loading. After establishing the initial position, three tests were performed with the 5th percentile female hybrid III dummy, and six experiments with small female cadaver subjects. A new 5th percentile female enhanced upper extremity was developed for the dummy experiments that included a two-axis wrist load cell in addition to the existing six-axis load cells in both the forearm and humerus. Forearm pronation was also included in the new dummy upper extremity to increase the biofidelity of the interaction with the handgrip. Instrumentation for both the cadaver and dummy tests included accelerometers and magnetohydrodynamic angular rate sensors on the forearm, humerus, upper and lower spine.
Technical Paper

Constitutive Modeling of Polymers Subjected to High Strain Rates

2001-03-05
2001-01-0472
A biaxial test procedure is used to assess the constitutive properties of polymers in tension. The constitutive constants are derived for high strain rate applications such as those associated with crashworthiness studies. The test procedure is used in conjunction with a time- and strain-dependent quasi-linear viscoelastic constitutive law consisting of a Mooney-Rivlin formulation combined with Maxwell elements. The procedure is demonstrated by describing the stress vs. strain relationship of a rubber specimen subjected to a step-relaxation input. The constitutive equation is transformed from a nonlinear convolution integral to a set of first order differential equations. These equations, with the appropriate boundary conditions, are solved numerically to obtain transient stresses in two principal directions. Material constants for use in the explicit LS-Dyna non-linear finite element code are provided.
Technical Paper

Displacement Measurements in the Hybrid III Chest

2001-03-05
2001-01-0118
This paper presents an analysis of the displacement measurement of the Hybrid III 50th percentile male dummy chest in quasistatic and dynamic loading environments. In this dummy, the sternal chest deformation is typically characterized using a sliding chest potentiometer, originally designed to measure inward deflection in the central axis of the dummy chest. Loading environments that include other modes of deformation, such as lateral translations or rotations, can create a displacement vector that is not aligned with this sensitive axis. To demonstrate this, the dummy chest was loaded quasistatically and dynamically in a series of tests. A string potentiometer array, with the capability to monitor additional deflection modes, was used to supplement the measurement of the chest slider.
Technical Paper

Failure Prediction of Sheet Metals Based on an Anisotropic Gurson Model

2000-03-06
2000-01-0766
A failure prediction methodology that can predict sheet metal failure under arbitrary deformation histories including rotating principal stretch directions and bending/unbending with consideration of damage evolution is reviewed in this paper. An anisotropic Gurson yield criterion is adopted to characterize the effects of microvoids on the load carrying capacity of sheet metals where Hill’s quadratic anisotropic yield criterion is used to describe the matrix normal anisotropy and planar isotropy. The evolution of the void damage is based on the growth, nucleation and coalescence of microvoids. Mroz’s anisotropic hardening rule, which was proposed based on the cyclic plastic behavior of metals observed in experiments, is generalized to characterize the anisotropic hardening behavior due to loading/unloading with consideration of the evolution of void volume fraction. The effects of yield surface curvature are also included in the plasticity model.
Technical Paper

Influence of Textures on Sheet Forming

2000-03-06
2000-01-0771
This paper reviews the relationship of the anisotropy of plastic behavior of sheet metal to crystallographic textures and the effect of anisotropic plastic behavior on sheet forming processes Although the basis is crystallographic, the anisotropy of cubic metals can be approximated by a continuum yield criterion. Use of this criterion in analyses of sheet forming gives better results than the usual quadratic criterion.
Technical Paper

Deployment of Air Bags into the Thorax of an Out-of-Position Dummy

1999-03-01
1999-01-0764
The air bag has proven effective in reducing fatalities in frontal crashes with estimated decreases ranging from 11% to 30% depending on the size of the vehicle [IIHS-1995, Kahane-1996]. At the same time, some air bag designs have caused fatalities when front-seat passengers have been in close proximity to the deploying air bag [Kleinberger-1997]. The objective of this study was to develop an accurate and repeatable out-of-position test fixture to study the deployment of air bags into out-of-position occupants. Tests were performed with a 5th percentile female Hybrid III dummy and studied air bag loading on the thorax using draft ISO-2 out-of-position (OOP) occupant positioning. Two different interpretations of the ISO-2 positioning were used in this study. The first, termed Nominal ISO-2, placed the chin on the steering wheel with the spine parallel to the steering wheel.
Technical Paper

Reducing the Risk of Driver Injury from Common Steering Control Devices in Frontal Collisions

1999-03-01
1999-01-0759
Steering control devices are used by people who have difficulty gripping the steering wheel. These devices have projections that may extend up to 14 cm toward the occupant. Testing indicated that contact with certain larger steering control devices with tall rigid projections could severely injure a driver in a frontal collision. In order to reduce this injury risk, an alternative, less injurious design was developed and tested. This design, which included replacing unyielding aluminum projections with compliant plastic ones, produced significantly lower peak contact pressure and less damage to the chest of a cadaver test subject, while maintaining the strength necessary to be useful.
Technical Paper

Energy and Entropy in Airbag Deployment: The Effect on an Out-Of-Position Occupant

1999-03-01
1999-01-1071
Deployment of an airbag or charging of a tank by an inflator-canister system is a highly dynamic process. Quantification of energy storage, energy flux, work done, flow rates, thermodynamic properties, and energy conservation are essential to describe the deployment process. The concepts of available work and entropy production are presented as useful parameters when evaluating airbag aggressivity from tank test results for different types of inflators. This paper presents a computational methodology to simulate a pyro- and a hybrid-inflator-canister-airbag system to predict the force pattern that could occur on an out-of-position occupant when the airbag deploys. Comparisons with experimental data have been made in all cases where data were available. These include driver-, passenger-, and side-airbag designs.
Technical Paper

An Experiment-Based Model of Fabric Heat Transfer and Its Inclusion in Air Bag Deployment Simulations

1999-03-01
1999-01-0437
A numerical model is presented that is capable of isolating and quantifying the heat flux from the gas within the bag to the air bag fabric due to internal surface convection during the inflator discharge period of an air bag deployment. The model is also capable of predicting the volume averaged fabric temperatures during the air bag deployment period. Implementation of the model into an air bag deployment code, namely Inflator Simulation Program (ISP), is presented along with the simulation results for typical inflators. The predicted effect of the heat loss from the bag gas to the fabric on the internal bag gas temperature and pressure and the resulting bulk fabric temperature as a function of fabric parameters and the inflator exit gas properties are presented for both permeable and impermeable air bag fabrics.
Technical Paper

Evaluation of 5th Percentile Female Hybrid III Thoracic Biofidelity during Out-of-Position Tests with a Driver Air Bag

1998-02-23
980636
This paper evaluates the biofidelity of the Hybrid III 5th percentile female dummy relative to seven small female cadavers tested as out-of-position drivers in static air bag deployment tests. In the out-of-position tests, the chest was positioned against the air bag module in an effort to recreate a worst-case loading environment for the thorax. Two pre-depowered production air bags and a prototype dual-stage air bag were evaluated. Thoracic accelerometers and chestbands were used to compare chest compression, velocity, acceleration, and Viscous Criteria. A statistical comparison of dummy and cadaver results indicate acceptable biofidelity of the Hybrid III dummy with significant differences observed only in the Viscous Criteria.
Technical Paper

Transient Heating of Air Bag Fabrics: Experiment and Modeling

1998-02-23
980865
A model is presented in which distinction is made between the contributions of the different mechanisms of heat transfer to an air bag fabric during deployment. An experimental setup, designed for simulation and recording of the thermal response of permeable and coated (impermeable) air bag fabrics, is described. Comparisons between the experimental results and numerical predictions show fair agreement. The preliminary results show that the model provides a framework in which the interplay between the three convective heat transfer coefficients (two surface and one volumetric) that affect the fabric temperature (and the heat loss from the upstream bag gas) can be examined. Currently the magnitude of these surface convective heat fluxes are being examined experimentally.
Technical Paper

An Evaluation of Airbag Tank-Test Results

1998-02-23
980864
The evaluation of the performance of a particular inflator for the design of the entire airbag system is typically carried out by examining the pressure pattern in a standard tank test. This study assesses the adequacy of the tank test as a true measure of the likely performance of the actual inflator-airbag system. Theoretical arguments, numerical experiments, and physical experiments show that the time rate of pressure change may be an appropriate measure to evaluate performance of a specific type of inflator, particularly if variations in the inflator design maintain the same working gas components. However, when evaluating and comparing the dynamic behavior between different types of inflators, the time rate of pressure change provides useful but incomplete information.
X