Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Analysis of the Event Data Recorder (EDR) Function of a GM Active Safety Control Module (EOCM3 LC)

2024-04-09
2024-01-2888
The Advanced Driver Assistance System (ADAS) is a comprehensive feature set designed to aid a driver in avoiding or reducing the severity of collisions while operating the vehicle within specified conditions. In General Motors (GM) vehicles, the primary controller for the ADAS is the Active Safety Control Module (ASCM). In the 2013 model year, GM introduced an ASCM utilizing the GM internal nomenclature of External Object Calculation Module (EOCM) in some of their vehicles produced for the North American market. Similar to the Sensing and Diagnostic Module (SDM) utilized in the restraints system, the EOCM3 LC contains an Event Data Recorder (EDR) function to capture and record information surrounding certain ADAS or Supplemental Inflatable Restraint (SIR) events. The ASCM EDR contains information from external object sensors, various chassis and powertrain control modules, and internally calculated data.
Technical Paper

Torque Ripple Cancellation to Reduce Electric Motor Noise for Electric Vehicles

2024-04-09
2024-01-2215
Electric motor whine is a major NVH source for electric vehicles. Traditional mitigation methods focus on e-motor hardware optimization, which requires long development cycles and may not be easily modified when the hardware is built. This paper presents a control- and software-based strategy to reduce the most dominant motor order of an IPM motor for General Motors’ Ultium electric propulsion system, using the patented active Torque Ripple Cancellation (TRC) technology with harmonic current injection. TRC improves motor NVH directly at the source level by targeting the torque ripple excitations, which are caused by the electromagnetic harmonic forces due to current ripples. Such field forces are actively compensated by superposition of a phase-shifted force of the same spatial order by using of appropriate current.
Technical Paper

Characterization of Embedded Debris Particles on Crankshaft Bearings

2024-04-09
2024-01-2594
Crankshaft bearings function to maintain the lubrication oil films needed to support crankshaft journals in hydrodynamic regime of rotation. Discontinuous oil films will cause the journal-bearing couple to be in a mixed or boundary lubrication condition, or even a bearing seizure or a spun bearing. This condition may further force the crankshaft to break and an engine shutdown. Spun bearings have been identified to be one of the top reasons in field returned engines. Excessive investigations have found large, embedded hard debris particles on the bearings are inevitably the culprit of destroying continuity of the oil films. Those particles, in particular the suspicious steel residues, in the sizes of hundreds of micrometers, are large enough to cause oil film to break, but rather fine and challenging for materials engineers to characterize their metallurgical features. This article presents the methodology and steps of debris analyses on bearings at different stages of engine build.
Technical Paper

A 3-D CFD Investigation of Ball Bearing Weir Geometries and Design Considerations for Lubrication

2024-04-09
2024-01-2439
The study focuses on understanding the air and oil flow characteristics within a ball bearing during high-speed rotation, with a particular emphasis on optimizing frictional heat dissipation and oil lubrication methods. Computational fluid dynamics (CFD) techniques are employed to analyze the intricate three-dimensional airflow and oil flow patterns induced by the motion of rotating and orbiting balls within the bearing. A significant challenge in conducting three-dimensional CFD studies lies in effectively resolving the extremely thin gaps existing between the balls, races, and cages within the bearing assembly. In this research, we adopt the ball-bearing structured meshing strategy offered by Simerics-MP+ to meticulously address these micron-level clearances, while also accommodating the rolling and rotation of individual balls. Furthermore, we investigate the impact of different designs of the lubrication ports to channel oil to other locations compared to the ball bearings.
Technical Paper

Estimating How Long In-Vehicle Tasks Take: Static Data for Distraction and Ease-of-Use Evaluations

2024-04-09
2024-01-2505
Often, when assessing the distraction or ease of use of an in-vehicle task (such as entering a destination using the street address method), the first question is “How long does the task take on average?” Engineers routinely resolve this question using computational models. For in-vehicle tasks, “how long” is estimated by summing times for the included task elements (e.g., decide what to do, press a button) from SAE Recommended Practice J2365 or now using new static (while parked) data presented here. Times for the occlusion conditions in J2365 and the NHTSA Distraction Guidelines can be determined using static data and Pettitt’s Method or Purucker’s Method. These first approximations are reasonable and can be determined quickly. The next question usually is “How likely is it that the task will exceed some limit?”
Technical Paper

A 3-D CFD Study of the Lubricating Oil Flow Path in a Hybrid Vehicle Transmission System

2024-04-09
2024-01-2635
Effective design of the lubrication path greatly influences the durability of any transmission system. However, it is experimentally impossible to estimate the internal distribution of the automotive transmission fluid (ATF) to different parts of the transmission system due to its structural complexities. Hybrid vehicle transmission systems usually consist of different types of bearings (ball bearings, thrust bearings, roller bearings, etc.) in conjunction with gear systems. It is a perennial challenge to computationally simulate such complicated rotating systems. Hence, one-dimensional models have been the state of the art for designing these intricate transmission systems. Though quantifiable, the 1D models still rely heavily on some testing data. Furthermore, HEVs (hybrid electric vehicles) desire a more efficient lubrication system compared to their counterparts (Internal combustion engine vehicles) to extend the range of operation on a single charge.
Technical Paper

Advanced Material Characterization of Hood Insulator Foams for Pedestrian Head Impact

2024-04-09
2024-01-2682
Hood insulators are widely used in automotive industry to improve noise insulation, pedestrian impact protection and to provide aesthetic appeal. They are attached below the hood panel and are often complex in shape and size. Pedestrian head impacts are highly dynamic events with a compressive strain rate experienced by the insulator exceeding 300/s. The energy generated by the impact is partly absorbed by the hood insulators thus reducing the head injury to the pedestrian. During this process, the insulator experiences multi-axial stress states. The insulators are usually made of soft multi-layered materials, such as polyurethane or fiberglass, and have a thin scrim layer on either side. These materials are foamed to their nominal thickness and are compression molded to take the required shape of the hood. During this process they undergo thickness reduction, thereby increasing their density.
Technical Paper

Comprehensive Evaluation of Behavioral Competence of an Automated Vehicle Using the Driving Assessment (DA) Methodology

2024-04-09
2024-01-2642
With the development of vehicles equipped with automated driving systems, the need for systematic evaluation of AV performance has grown increasingly imperative. According to ISO 34502, one of the safety test objectives is to learn the minimum performance levels required for diverse scenarios. To address this need, this paper combines two essential methodologies - scenario-based testing procedures and scoring systems - to systematically evaluate the behavioral competence of AVs. In this study, we conduct comprehensive testing across diverse scenarios within a simulator environment following Mcity AV Driver Licensing Test procedure. These scenarios span several common real-world driving situations, including BV Cut-in, BV Lane Departure into VUT Path from Opposite Direction, BV Left Turn Across VUT Path, and BV Right Turn into VUT Path scenarios.
Technical Paper

Dynamic Characterization of a Twin Plate Torque Converter Clutch During Controlled Slip

2024-04-09
2024-01-2715
This paper details testing for torque converter clutch (TCC) characterization during steady state and dynamic operation under controlled slip conditions on a dynamometer setup. The subject torque converter under test is a twin plate clutch with a dual stage turbine damper without a centrifugal pendulum absorber. An overview is provided of the dynamometer setup, hydraulic system and control techniques for regulating the apply pressure to the torque converter and clutch. To quantify the performance of the clutch in terms of control stability, pressure to torque relationship and the dynamic behavior during apply and release, a matrix of oil temperatures, output speeds, input torques, and clutch apply pressures were imposed upon the torque converter.
Technical Paper

Electric Motor Noise Reduction with Stator Mounted NVH Insert Ring

2024-04-09
2024-01-2205
Electric motor noise mitigation is a challenge in electric vehicles (EVs) due to the lack of engine masking noise. The design of the electric motor mounting configuration to the motor housing has significant impacts on the radiated noise of the drive unit. The stator can be bolted or interference-fit with the housing. A bolted stator creates motor whine and vibration excited by the motor torque ripple at certain torsional resonance frequencies. A stator with interference fit configuration stiffens the motor housing and pushes resonances to a higher frequency range, where masking noise levels are higher at faster vehicle speeds. However, this comes with additional cost and manufacturing process and may impact motor efficiency due to high stress on stators. In this paper, a thin sheet metal NVH ring is developed as a tunable stiffness device between the stator and the motor housing. It is pre-compressed and provides additional torsional rigidity to mitigate torsional excitations.
Technical Paper

A Renewed Look at Centralized vs. Decentralized Actuation for Braking Systems

2023-11-05
2023-01-1865
De-centralized brake actuation – that is, brake systems that incorporate individual actuators at each wheel brake location to both provide the apply energy and the modulation of braking force – is not a new area of study. Typically realized in the form of electro-mechanical brake calipers or drum brakes, or as “single corner” hydraulic actuators, de-centralized actuation in braking systems has already been deployed in production on General Motor EV1 Electric Vehicle (1997) in the form of electric drum brakes and has been studied continually by the automotive industry since then. It is frequently confused with “brake by wire,” and indeed practical implementations of de-centralized actuation are a form of brake by wire technology. However, with millions of vehicles on the road already with “brake by wire” systems - the vast majority of which have centralized brake actuation – the future of “brake by wire” is arguable settled.
Technical Paper

Virtual Development of Control Coordinator for Engine and Aftertreatment Architecture Equipped with Diesel Fuel Burner

2023-08-28
2023-24-0103
Heating devices are effective technologies to strengthen emission robustness of AfterTreatment Systems (ATS) and to guarantee emission compliance in the new boundaries given by upcoming legislations. Moreover, they allow to manage the ATS warm-up independently from engine operating conditions, thereby reducing the need for specific combustion strategies. Within heating devices, an attractive solution to provide the required thermal power without mandating a 48V platform is the fuel burner. In this work, a model-based control coordinator to manage the interaction between engine, ATS and fuel burner device has been developed, virtually validated, and optimized. The control function features a burner model and a control logic to deliver the needed amount of thermal energy, while ensuring ATS hardware protection.
Journal Article

A Process to Characterize the Sound Directivity Pattern of AVAS Speaker

2023-05-08
2023-01-1095
Speaker performance in Acoustic Vehicle Alerting System (AVAS) plays a crucial role for pedestrian safety. Sound radiation from AVAS speaker has obvious directivity pattern. Considering this feature is critical for accurately simulating the exterior sound field of electrical vehicles. This paper proposes a new process to characterize the sound directivity pattern of AVAS speaker. The first step of the process is to perform an acoustic testing to measure the sound pressure radiated from the speaker at a certain number of microphone locations in a free field environment. Based on the geometry of a virtual speaker, the locations of each microphone and measured sound pressure data, an inverse method, namely the inverse pellicular analysis, is adopted to recover a set of vibration pattern of the virtual speaker surface. The recovered surface vibration pattern can then be incorporated in the full vehicle numerical model as an excitation for simulating the exterior sound field.
Technical Paper

A Data-Driven Framework of Crash Scenario Typology Development for Child Vulnerable Road Users in the U.S.

2023-04-11
2023-01-0787
Motor vehicle crashes involving child Vulnerable Road Users (VRUs) remain a critical public health concern in the United States. While previous studies successfully utilized the crash scenario typology to examine traffic crashes, these studies focus on all types of motor vehicle crashes thus the method might not apply to VRU crashes. Therefore, to better understand the context and causes of child VRU crashes on the U.S. road, this paper proposes a multi-step framework to define crash scenario typology based on the Fatality Analysis Reporting System (FARS) and the Crash Report Sampling System (CRSS). A comprehensive examination of the data elements in FARS and CRSS was first conducted to determine elements that could facilitate crash scenario identification from a systematic perspective. A follow-up context description depicts the typical behavioral, environmental, and vehicular conditions associated with an identified crash scenario.
Technical Paper

Cylindrical Li-Ion Cell Crush CAE Capability in Automotive Application

2023-04-11
2023-01-0509
The world is moving towards E-mobility solutions and Battery Electric Vehicles (BEVs) are the main enabler towards it. Li-ion cells are the fundamental building block of any BEVs. There are three common types of Li-ion cell design i.e., cylindrical cells, Prismatic Cells and Pouch cells. Ensuring safety of BEVs are critical to gain customer trust and acceptance over Internal Combustion Engine (ICE) vehicles. EV fire is found to be one of the major concerns related to using higher energy batteries. During a crash event, Post-Crash Electrical Integrity of the BEV is to be ensured and hence primary focus is on mitigation of Li-ion cell internal short circuit. It has been seen in prior published articles that cell internal short circuit can be triggered by physical intrusion of cell. This paper primarily focusses on simulating the mechanical behavior of cylindrical cell under various crush conditions.
Technical Paper

Characterization and Modeling of Instrument Panel Textile Trim Materials for Passenger Airbag Deployment Analysis

2023-04-11
2023-01-0930
Premium instrument panels (IPs) contain passenger airbag (PAB) systems that are typically comprised of a stiff plastic substrate and a soft ‘skin’ material which are adhesively bonded. During airbag deployment, the skin tears along the scored edges of the door holding the PAB system, the door opens, and the airbag inflates to protect the occupant. To accurately simulate the PAB deployment dynamics during a crash event all components of the instrument panel and the PAB system, including the skin, must be included in the model. It has been recognized that the material characterization and modeling of the skin tearing behavior are critical for predicting the timing and inflation kinematics of the airbag. Even so, limited data exists in the literature for skin material properties at hot and cold temperatures and at the strain rates created during the airbag deployment.
Technical Paper

Driveline Control Influence when ABS Active

2023-04-11
2023-01-0662
The interaction between driveline control and anti-lock braking system (ABS) control in electric vehicles (EV) was investigated based on multi-body dynamics (MBD) model and control model co-simulation. Two primary driveline control algorithms, active damping control and wheel flare control, were integrated with ABS control in Simulink model and the influence on ABS control was studied. The event for high mu to low mu transition was simulated. When ABS control is active on low mu surface, the vehicle shows large wheel slip and long duration time before wheel speed returns to stable control. This performance could be improved with activating driveline control. Deceleration uniformity metric shows that active damping control has very small effect when ABS control becomes stable after passing through the high mu to low mu transition period. Driveline damping control can help to reduce vibration, but it is difficult to find satisfied tuning for wheel speed performance.
Journal Article

A Standard Set of Courses to Assess the Quality of Driving Off-Road Combat Vehicles

2023-04-11
2023-01-0114
Making manned and remotely-controlled wheeled and tracked vehicles easier to drive, especially off-road, is of great interest to the U.S. Army. If vehicles are easier to drive (especially closed hatch) or if they are driven autonomously, then drivers could perform additional tasks (e.g., operating weapons or communication systems), leading to reduced crew sizes. Further, poorly driven vehicles are more likely to get stuck, roll over, or encounter mines or improvised explosive devices, whereby the vehicle can no longer perform its mission and crew member safety is jeopardized. HMI technology and systems to support human drivers (e.g., autonomous driving systems, in-vehicle monitors or head-mounted displays, various control devices (including game controllers), navigation and route-planning systems) need to be evaluated, which traditionally occurs in mission-specific (and incomparable) evaluations.
Technical Paper

Virtual Testing of Front Camera Module

2023-04-11
2023-01-0823
The front camera module is a fundamental component of a modern vehicle’s active safety architecture. The module supports many active safety features. Perception of the road environment, requests for driver notification or alert, and requests for vehicle actuation are among the camera software’s key functions. This paper presents a novel method of testing these functions virtually. First, the front camera module software is compiled and packaged in a Docker container capable of running on a standard Linux computer as a software in the loop (SiL). This container is then integrated with the active safety simulation tool that represents the vehicle plant model and allows modeling of test scenarios. Then the following simulation components form a closed loop: First, the active safety simulation tool generates a video data stream (VDS). Using an internet protocol, the tool sends the VDS to the camera SiL and other vehicle channels.
Technical Paper

Analytical Failure Modeling of Thermal Interface Material in High Voltage Battery Modules in Electric Vehicle Crash Scenario

2023-04-11
2023-01-0521
Battery Electric Vehicles (BEVs) are becoming more competitive day by day to achieve maximum peak power and energy requirement. This poses challenges to the design of Thermal Interface Material (TIM) which maintains the cell temperature and ensure retention of cell and prevent electrolyte leak under different crash loads. TIM can be in the form of adhesives, gels, gap fillers. In this paper, TIM is considered as structural, and requires design balance with respect to thermal and mechanical requirements. Improving structural strength of TIM will have negative impact on its thermal conductivity; hence due care needs to be taken to determine optimal strength that meets both structural and thermal performance. During various crash conditions, due to large inertial force of cell and module assembly, TIM is undertaking significant loads on tensile and shear directions. LS-DYNA® is used as simulation solver for performing crash loading conditions and evaluate structural integrity of TIM.
X